LIPIcs.AofA.2024.3.pdf
- Filesize: 0.69 MB
- 12 pages
We consider the number of occurrences of subwords (non-consecutive sub-sequences) in a given word. We first define the notion of subword entropy of a given word that measures the maximal number of occurrences among all possible subwords. We then give upper and lower bounds of minimal subword entropy for words of fixed length in a fixed alphabet, and also showing that minimal subword entropy per letter has a limit value. A better upper bound of minimal subword entropy for a binary alphabet is then given by looking at certain families of periodic words. We also give some conjectures based on experimental observations.
Feedback for Dagstuhl Publishing