LIPIcs.AofA.2024.9.pdf
- Filesize: 0.74 MB
- 15 pages
The FIND algorithm (also called Quickselect) is a fundamental algorithm to select ranks or quantiles within a set of data. It was shown by Grübel and Rösler that the number of key comparisons required by FIND as a process of the quantiles α ∈ [0,1] in a natural probabilistic model converges after normalization in distribution within the càdlàg space D[0,1] endowed with the Skorokhod metric. We show that the process of the residuals in the latter convergence after normalization converges in distribution to a mixture of Gaussian processes in D[0,1] and identify the limit’s conditional covariance functions. A similar result holds for the related algorithm QuickVal. Our method extends to other cost measures such as the number of swaps (key exchanges) required by FIND or cost measures which are based on key comparisons but take into account that the cost of a comparison between two keys may depend on their values, an example being the number of bit comparisons needed to compare keys given by their bit expansions.
Feedback for Dagstuhl Publishing