LIPIcs.CCC.2024.11.pdf
- Filesize: 0.84 MB
- 20 pages
We study the circuit complexity of the multiselection problem: given an input string x ∈ {0,1}ⁿ along with indices i_1,… ,i_q ∈ [n], output (x_{i_1},… ,x_{i_q}). A trivial lower bound for the circuit size is the input length n + q⋅log(n), but the straightforward construction has size Θ(q⋅n). Our main result is an O(n+q⋅log³(n))-size and O(log(n+q))-depth circuit for multiselection. In particular, for any q ≤ n/log³(n) the circuit has linear size and logarithmic depth. Prior to our work no linear-size circuit for multiselection was known for any q = ω(1) and regardless of depth.
Feedback for Dagstuhl Publishing