Linear-Size Boolean Circuits for Multiselection

Authors Justin Holmgren , Ron Rothblum



PDF
Thumbnail PDF

File

LIPIcs.CCC.2024.11.pdf
  • Filesize: 0.84 MB
  • 20 pages

Document Identifiers

Author Details

Justin Holmgren
  • NTT Research, Sunnyvale, CA, USA
Ron Rothblum
  • Technion, Haifa, Israel

Acknowledgements

We thank Yuval Ishai for useful discussions and his encouragement and an anonymous reviewer for useful comments.

Cite AsGet BibTex

Justin Holmgren and Ron Rothblum. Linear-Size Boolean Circuits for Multiselection. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 11:1-11:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.CCC.2024.11

Abstract

We study the circuit complexity of the multiselection problem: given an input string x ∈ {0,1}ⁿ along with indices i_1,… ,i_q ∈ [n], output (x_{i_1},… ,x_{i_q}). A trivial lower bound for the circuit size is the input length n + q⋅log(n), but the straightforward construction has size Θ(q⋅n). Our main result is an O(n+q⋅log³(n))-size and O(log(n+q))-depth circuit for multiselection. In particular, for any q ≤ n/log³(n) the circuit has linear size and logarithmic depth. Prior to our work no linear-size circuit for multiselection was known for any q = ω(1) and regardless of depth.

Subject Classification

ACM Subject Classification
  • Theory of computation → Design and analysis of algorithms
Keywords
  • Private Information Retrieval
  • Batch Selection
  • Boolean Circuits

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. M. Ajtai, J. Komlós, and E. Szemerédi. An 0(n log n) sorting network. In Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, STOC '83, pages 1-9, New York, NY, USA, 1983. Association for Computing Machinery. URL: https://doi.org/10.1145/800061.808726.
  2. Alexander Andreev. On a method for obtaining more than quadratic effective lower bounds for the complexity of π-scheme. Moscow University Mathematics Bulletin, 42(1):63-66, 1987. Google Scholar
  3. Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak, Enoch Peserico, and Elaine Shi. Optorama: Optimal oblivious RAM. In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part II, volume 12106 of Lecture Notes in Computer Science, pages 403-432. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-45724-2_14.
  4. Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Enoch Peserico, and Elaine Shi. Oblivious parallel tight compaction. In ITC, volume 163 of LIPIcs, pages 11:1-11:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. Google Scholar
  5. Gilad Asharov, Wei-Kai Lin, and Elaine Shi. Sorting short keys in circuits of size o(nlog n). SIAM J. Comput., 51(3):424-466, 2022. URL: https://doi.org/10.1137/20m1380983.
  6. Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing the servers computation in private information retrieval: PIR with preprocessing. In CRYPTO, volume 1880 of Lecture Notes in Computer Science, pages 55-73. Springer, 2000. Google Scholar
  7. Norbert Blum. A boolean function requiring 3n network size. Theor. Comput. Sci., 28:337-345, 1984. URL: https://doi.org/10.1016/0304-3975(83)90029-4.
  8. Elette Boyle, Yuval Ishai, Rafael Pass, and Mary Wootters. Can we access a database both locally and privately? In TCC (2), volume 10678 of Lecture Notes in Computer Science, pages 662-693. Springer, 2017. Google Scholar
  9. Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Leveraging linear decryption: Rate-1 fully-homomorphic encryption and time-lock puzzles. In TCC (2), volume 11892 of Lecture Notes in Computer Science, pages 407-437. Springer, 2019. Google Scholar
  10. Ran Canetti, Justin Holmgren, and Silas Richelson. Towards doubly efficient private information retrieval. In TCC (2), volume 10678 of Lecture Notes in Computer Science, pages 694-726. Springer, 2017. Google Scholar
  11. Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private information retrieval. J. ACM, 45(6):965-981, 1998. URL: https://doi.org/10.1145/293347.293350.
  12. Edgar F Codd. A relational model of data for large shared data banks. Communications of the ACM, 13(6):377-387, 1970. Google Scholar
  13. Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption with polylog overhead. In EUROCRYPT, volume 7237 of Lecture Notes in Computer Science, pages 465-482. Springer, 2012. Google Scholar
  14. Justin Holmgren and Ron D. Rothblum. Faster sounder succinct arguments and IOPs. In CRYPTO (1), volume 13507 of Lecture Notes in Computer Science, pages 474-503. Springer, 2022. Google Scholar
  15. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Batch codes and their applications. In STOC, pages 262-271. ACM, 2004. Google Scholar
  16. Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In STOC, pages 723-732. ACM, 1992. Google Scholar
  17. É Sh Kospanov. Scheme realization of the sorting problem. Diskretnyi Analiz i Issledovanie Operatsii, 1(1):13-19, 1994. Google Scholar
  18. Michal Koucký and Karel Král. Sorting short integers. In ICALP, volume 198 of LIPIcs, pages 88:1-88:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. Google Scholar
  19. Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT needed: SINGLE database, computationally-private information retrieval. In 38th Annual Symposium on Foundations of Computer Science, FOCS '97, Miami Beach, Florida, USA, October 19-22, 1997, pages 364-373. IEEE Computer Society, 1997. URL: https://doi.org/10.1109/SFCS.1997.646125.
  20. Richard E. Ladner and Michael J. Fischer. Parallel prefix computation. J. ACM, 27(4):831-838, October 1980. URL: https://doi.org/10.1145/322217.322232.
  21. Wei-Kai Lin, Ethan Mook, and Daniel Wichs. Doubly efficient private information retrieval and fully homomorphic ram computation from ring lwe. Cryptology ePrint Archive, Paper 2022/1703, 2022. URL: https://eprint.iacr.org/2022/1703.
  22. Wei-Kai Lin and Elaine Shi. Optimal sorting circuits for short keys. CoRR, abs/2102.11489, 2021. URL: https://arxiv.org/abs/2102.11489.
  23. È. I. Nechiporuk. A Boolean function. Sov. Math., Dokl., 7:999-1000, 1966. Google Scholar
  24. Wolfgang J. Paul. A 2.5 n-lower bound on the combinational complexity of boolean functions. SIAM J. Comput., 6(3):427-443, 1977. URL: https://doi.org/10.1137/0206030.
  25. Nicholas Pippenger. Self-routing superconcentrators. J. Comput. Syst. Sci., 52(1):53-60, 1996. URL: https://doi.org/10.1006/jcss.1996.0005.
  26. Noga Ron-Zewi and Ron D. Rothblum. Proving as fast as computing: succinct arguments with constant prover overhead. In STOC, pages 1353-1363. ACM, 2022. Google Scholar
  27. John E. Savage. Models of computation - exploring the power of computing. Addison-Wesley, 1998. Google Scholar
  28. Leslie G. Valiant. On non-linear lower bounds in computational complexity. In William C. Rounds, Nancy Martin, Jack W. Carlyle, and Michael A. Harrison, editors, Proceedings of the 7th Annual ACM Symposium on Theory of Computing, May 5-7, 1975, Albuquerque, New Mexico, USA, pages 45-53. ACM, 1975. URL: https://doi.org/10.1145/800116.803752.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail