LIPIcs.CCC.2024.16.pdf
- Filesize: 0.93 MB
- 30 pages
Consider the expected query complexity of computing the k-fold direct product f^{⊗ k} of a function f to error ε with respect to a distribution μ^k. One strategy is to sequentially compute each of the k copies to error ε/k with respect to μ and apply the union bound. We prove a strong direct sum theorem showing that this naive strategy is essentially optimal. In particular, computing a direct product necessitates a blowup in both query complexity and error. Strong direct sum theorems contrast with results that only show a blowup in query complexity or error but not both. There has been a long line of such results for distributional query complexity, dating back to (Impagliazzo, Raz, Wigderson 1994) and (Nisan, Rudich, Saks 1994), but a strong direct sum theorem that holds for all functions in the standard query model had been elusive. A key idea in our work is the first use of the Hardcore Theorem (Impagliazzo 1995) in the context of query complexity. We prove a new resilience lemma that accompanies it, showing that the hardcore of f^{⊗k} is likely to remain dense under arbitrary partitions of the input space.
Feedback for Dagstuhl Publishing