Dimension Independent Disentanglers from Unentanglement and Applications

Authors Fernando Granha Jeronimo , Pei Wu



PDF
Thumbnail PDF

File

LIPIcs.CCC.2024.26.pdf
  • Filesize: 0.87 MB
  • 28 pages

Document Identifiers

Author Details

Fernando Granha Jeronimo
  • Institute for Advanced Studies, Princeton, NJ, USA
  • Simons Institute, Berkeley, CA, USA
Pei Wu
  • Weizmann Institute of Science, Rehovot, Israel

Cite AsGet BibTex

Fernando Granha Jeronimo and Pei Wu. Dimension Independent Disentanglers from Unentanglement and Applications. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 26:1-26:28, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.CCC.2024.26

Abstract

Quantum entanglement, a distinctive form of quantum correlation, has become a key enabling ingredient in diverse applications in quantum computation, complexity, cryptography, etc. However, the presence of unwanted adversarial entanglement also poses challenges and even prevents the correct behaviour of many protocols and applications. In this paper, we explore methods to "break" the quantum correlations. Specifically, we construct a dimension-independent k-partite disentangler (like) channel from bipartite unentangled input. In particular, we show: For every d,𝓁 ≥ k ∈ ℕ^+, there is an efficient channel Λ : ℂ^{d𝓁} ⊗ ℂ^{d𝓁} → ℂ^{dk} such that for every bipartite separable density operator ρ₁⊗ ρ₂, the output Λ(ρ₁⊗ρ₂) is close to a k-partite separable state. Concretely, for some distribution μ on states from C^d, ║ Λ(ρ₁⊗ρ₂) - ∫ |ψ⟩⟨ψ|^{⊗k} dμ(ψ) ║₁ ≤ Õ((k³/𝓁)^{1/4}). Moreover, Λ(|ψ⟩⟨ψ|^{⊗𝓁} ⊗ |ψ⟩⟨ψ|^{⊗𝓁}) = |ψ⟩⟨ψ|^{⊗k}. Without the bipartite unentanglement assumption, the above bound is conjectured to be impossible and would imply QMA(2) = QMA. Leveraging multipartite unentanglement ensured by our disentanglers, we achieve the following: (i) a new proof that QMA(2) admits arbitrary gap amplification; (ii) a variant of the swap test and product test with improved soundness, addressing a major limitation of their original versions. More importantly, we demonstrate that unentangled quantum proofs of almost general real amplitudes capture NEXP, thereby greatly relaxing the non-negative amplitudes assumption in the recent work of QMA^+(2) = NEXP [Jeronimo and Wu, STOC 2023]. Specifically, our findings show that to capture NEXP, it suffices to have unentangled proofs of the form |ψ⟩ = √a |ψ_{+}⟩ + √{1-a} |ψ_{-}⟩ where |ψ_{+}⟩ has non-negative amplitudes, |ψ_{-}⟩ only has negative amplitudes and |a-(1-a)| ≥ 1/poly(n) with a ∈ [0,1]. Additionally, we present a protocol achieving an almost largest possible completeness-soundness gap before obtaining QMA^ℝ(k) = NEXP, namely, a 1/poly(n) additive improvement to the gap results in this equality.

Subject Classification

ACM Subject Classification
  • Theory of computation → Interactive proof systems
  • Theory of computation → Quantum information theory
Keywords
  • QMA(2)
  • disentangler
  • quantum proofs

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Scott Aaronson, Salman Beigi, Andrew Drucker, Bill Fefferman, and Peter Shor. The power of unentanglement. In Proceedings of the 23rd IEEE Conference on Computational Complexity (CCC), pages 223-236, 2008. URL: https://doi.org/10.1109/CCC.2008.5.
  2. Adriano Barenco, André Berthiaume, David Deutsch, Artur Ekert, Richard Jozsa, and Chiara Macchiavello. Stabilization of quantum computations by symmetrization. SIAM Journal on Computing, 26(5), 1997. Google Scholar
  3. Roozbeh Bassirian, Bill Fefferman, and Kunal Marwaha. Quantum Merlin-Arthur and Proofs Without Relative Phase. In Proceedings of the 15th Innovations in Theoretical Computer Science Conference (ITCS), volume 287, pages 9:1-9:19, 2024. URL: https://doi.org/10.4230/LIPIcs.ITCS.2024.9.
  4. Salman Beigi. NP vs QMAlog(2). Quantum Info. Comput., 2010. URL: https://doi.org/10.5555/2011438.2011448.
  5. J. S. Bell. On the einstein podolsky rosen paradox. Physics Physique Fizika, 1, November 1964. URL: https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195.
  6. Hugue Blier and Alain Tapp. All languages in NP have very short quantum proofs. In 2009 Third International Conference on Quantum, Nano and Micro Technologies, pages 34-37, 2009. URL: https://doi.org/10.1109/icqnm.2009.21.
  7. Fernando G. S. L. Brandão, Matthias Christandl, and Jon Yard. Faithful squashed entanglement. Communications in Mathematical Physics, 2011. URL: https://doi.org/10.1007/s00220-011-1302-1.
  8. Fernando G. S. L. Brandao and Aram W. Harrow. Estimating operator norms using covering nets, 2015. URL: https://arxiv.org/abs/1509.05065.
  9. Fernando G.S.L. Brandão and Aram W. Harrow. Quantum de finetti theorems under local measurements with applications. In Proceedings of the 45th ACM Symposium on Theory of Computing (STOC), 2013. URL: https://doi.org/10.1145/2488608.2488718.
  10. Matthias Christandl, Robert König, Graeme Mitchison, and Renato Renner. One-and-a-half quantum de finetti theorems. Communications in mathematical physics, 273(2):473-498, 2007. Google Scholar
  11. John F. Clauser, Michael A. Horne, Abner Shimony, and Richard A. Holt. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett., 23, October 1969. URL: https://doi.org/10.1103/physrevlett.24.549.
  12. Andrew C. Doherty, Pablo A. Parrilo, and Federico M. Spedalieri. Complete family of separability criteria. Physical Review A, 69, 2004. URL: https://doi.org/10.1103/physreva.69.022308.
  13. A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev., 47, May 1935. URL: https://doi.org/10.1007/978-3-322-91080-6_6.
  14. François Le Gall, Shota Nakagawa, and Harumichi Nishimura. On QMA protocols with two short quantum proofs. Quantum Info. Comput., 2012. URL: https://doi.org/10.26421/qic12.7-8-4.
  15. Jeongwan Haah, Aram W. Harrow, Zhengfeng Ji, Xiaodi Wu, and Nengkun Yu. Sample-optimal tomography of quantum states. IEEE Transactions on Information Theory, 2017. Google Scholar
  16. Aram W Harrow. The church of the symmetric subspace. arXiv preprint, 2013. URL: https://arxiv.org/abs/1308.6595.
  17. Aram W. Harrow and Ashley Montanaro. Testing product states, quantum merlin-arthur games and tensor optimization. J. ACM, 60(1), February 2013. URL: https://doi.org/10.1145/2432622.2432625.
  18. Aram W. Harrow, Anand Natarajan, and Xiaodi Wu. An improved semidefinite programming hierarchy for testing entanglement. Communications in Mathematical Physics, 2017. URL: https://doi.org/10.1007/s00220-017-2859-0.
  19. Ryszard Horodecki, Paweł Horodecki, Michał Horodecki, and Karol Horodecki. Quantum entanglement. Rev. Mod. Phys., 81:865-942, June 2009. URL: https://doi.org/10.1103/RevModPhys.81.865.
  20. Fernando Granha Jeronimo and Pei Wu. The Power of Unentangled Quantum Proofs with Non-negative Amplitudes. In Proceedings of the 55th ACM Symposium on Theory of Computing (STOC), 2023. Google Scholar
  21. Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen. MIP*=RE, 2020. URL: https://doi.org/10.1145/3485628.
  22. Masaru Kada, Harumichi Nishimura, and Tomoyuki Yamakami. The efficiency of quantum identity testing of multiple states. Journal of Physics A: Mathematical and Theoretical, 41(39):395309, September 2008. URL: https://doi.org/10.1088/1751-8113/41/39/395309.
  23. Hirotada Kobayashi, Keiji Matsumoto, and Tomoyuki Yamakami. Quantum merlin-arthur proof systems: Are multiple merlins more helpful to arthur? In Algorithms and Computation, 2003. URL: https://doi.org/10.1007/978-3-540-24587-2_21.
  24. Robert König and Renato Renner. A de Finetti representation for finite symmetric quantum states. Journal of Mathematical Physics, 46(12), 2005. Google Scholar
  25. Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 2010. URL: https://doi.org/10.5555/1972505.
  26. Ryan O'Donnell and John Wright. Efficient quantum tomography. In Proceedings of the 48th ACM Symposium on Theory of Computing (STOC), 2016. Google Scholar
  27. Attila Pereszlényi. Multi-prover quantum merlin-arthur proof systems with small gap, 2012. URL: https://arxiv.org/abs/1205.2761.
  28. Renato Renner. Security of quantum key distribution. International Journal of Quantum Information, 2008. Google Scholar
  29. Adrian She and Henry Yuen. Unitary property testing lower bounds by polynomials. In Proceedings of the 14th Innovations in Theoretical Computer Science Conference (ITCS), 2023. Google Scholar
  30. Yaoyun Shi and Xiaodi Wu. Epsilon-net method for optimizations over separable states. In Proceedings of the 39th International Colloquium on Automata, Languages and Programming (ICALP), 2012. URL: https://doi.org/10.1016/j.tcs.2015.03.031.
  31. Mehdi Soleimanifar and John Wright. Testing matrix product states. In Proceedings of the 33rd ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1679-1701, 2022. URL: https://doi.org/10.1137/1.9781611977073.68.
  32. John Watrous. The Theory of Quantum Information. Cambridge University Press, 2018. URL: https://doi.org/10.1017/9781316848142.