Weighted Basic Parallel Processes and Combinatorial Enumeration

Author Lorenzo Clemente



PDF
Thumbnail PDF

File

LIPIcs.CONCUR.2024.18.pdf
  • Filesize: 0.88 MB
  • 22 pages

Document Identifiers

Author Details

Lorenzo Clemente
  • Department of Mathematics, Mechanics, and Computer Science, University of Warsaw, Poland

Acknowledgements

We warmly thank Mikołaj Bojańczyk, Arka Ghosh, Filip Mazowiecki, and Paweł Parys for their comments and support at the various stages of this work.

Cite AsGet BibTex

Lorenzo Clemente. Weighted Basic Parallel Processes and Combinatorial Enumeration. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 18:1-18:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.CONCUR.2024.18

Abstract

We study weighted basic parallel processes (WBPP), a nonlinear recursive generalisation of weighted finite automata inspired from process algebra and Petri net theory. Our main result is an algorithm of 2-EXPSPACE complexity for the WBPP equivalence problem. While (unweighted) BPP language equivalence is undecidable, we can use this algorithm to decide multiplicity equivalence of BPP and language equivalence of unambiguous BPP, with the same complexity. These are long-standing open problems for the related model of weighted context-free grammars. Our second contribution is a connection between WBPP, power series solutions of systems of polynomial differential equations, and combinatorial enumeration. To this end we consider constructible differentially finite power series (CDF), a class of multivariate differentially algebraic series introduced by Bergeron and Reutenauer in order to provide a combinatorial interpretation to differential equations. CDF series generalise rational, algebraic, and a large class of D-finite (holonomic) series, for which no complexity upper bound for equivalence was known. We show that CDF series correspond to commutative WBPP series. As a consequence of our result on WBPP and commutativity, we show that equivalence of CDF power series can be decided with 2-EXPTIME complexity. In order to showcase the CDF equivalence algorithm, we show that CDF power series naturally arise from combinatorial enumeration, namely as the exponential generating series of constructible species of structures. Examples of such species include sequences, binary trees, ordered trees, Cayley trees, set partitions, series-parallel graphs, and many others. As a consequence of this connection, we obtain an algorithm to decide multiplicity equivalence of constructible species, decidability of which was not known before. The complexity analysis is based on effective bounds from algebraic geometry, namely on the length of chains of polynomial ideals constructed by repeated application of finitely many, not necessarily commuting derivations of a multivariate polynomial ring. This is obtained by generalising a result of Novikov and Yakovenko in the case of a single derivation, which is noteworthy since generic bounds on ideal chains are non-primitive recursive in general. On the way, we develop the theory of WBPP series and CDF power series, exposing several of their appealing properties.

Subject Classification

ACM Subject Classification
  • Theory of computation → Quantitative automata
  • Theory of computation → Concurrency
  • Mathematics of computing → Combinatorics
Keywords
  • weighted automata
  • combinatorial enumeration
  • shuffle
  • algebraic differential equations
  • process algebra
  • basic parallel processes
  • species of structures

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Nikhil Balaji, Lorenzo Clemente, Klara Nosan, Mahsa Shirmohammadi, and James Worrell. Multiplicity problems on algebraic series and context-free grammars. In Proc. of LICS'23, pages 1-12, 2023. URL: https://doi.org/10.1109/LICS56636.2023.10175707.
  2. Henning Basold, Helle Hvid Hansen, Jean-Éric Pin, and Jan Rutten. Newton series, coinductively: a comparative study of composition. Mathematical Structures in Computer Science, 29(1):38-66, June 2017. URL: https://doi.org/10.1017/s0960129517000159.
  3. Michael Benedikt, Timothy Duff, Aditya Sharad, and James Worrell. Polynomial automata: Zeroness and applications. In Proc. of LICS'17, pages 1-12, June 2017. URL: https://doi.org/10.1109/LICS.2017.8005101.
  4. François Bergeron, Philippe Flajolet, and Bruno Salvy. Varieties of increasing trees. In J. C. Raoult, editor, CAAP'92, pages 24-48, Berlin, Heidelberg, 1992. Springer Berlin Heidelberg. Google Scholar
  5. François Bergeron, Gilbert Labelle, Pierre Leroux, and Margaret Readdy. Combinatorial Species and Tree-like Structures. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1998. Google Scholar
  6. François Bergeron and Christophe Reutenauer. Combinatorial resolution of systems of differential equations iii: A special class of differentially algebraic series. European Journal of Combinatorics, 11(6):501-512, 1990. Google Scholar
  7. François Bergeron and Ulrike Sattler. Constructible differentially finite algebraic series in several variables. Theoretical Computer Science, 144(1):59-65, 1995. Google Scholar
  8. J. Berstel and C. Reutenauer. Noncommutative rational series with applications. CUP, 2010. Google Scholar
  9. Mikołaj Bojańczyk, Bartek Klin, and Joshua Moerman. Orbit-finite-dimensional vector spaces and weighted register automata. In Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '21. IEEE Press, 2021. URL: https://doi.org/10.1109/LICS52264.2021.9470634.
  10. Michele Boreale. Algebra, coalgebra, and minimization in polynomial differential equations. Logical Methods in Computer Science, Volume 15, Issue 1, February 2019. Google Scholar
  11. Michele Boreale. Complete algorithms for algebraic strongest postconditions and weakest preconditions in polynomial odes. Science of Computer Programming, 193:102441, 2020. Google Scholar
  12. Michele Boreale. Automatic pre- and postconditions for partial differential equations. Information and Computation, 285:104860, 2022. Google Scholar
  13. Michele Boreale, Luisa Collodi, and Daniele Gorla. Products, polynomials and differential equations in the stream calculus. ACM Trans. Comput. Logic, 25(1), January 2024. URL: https://doi.org/10.1145/3632747.
  14. Michele Boreale and Daniele Gorla. Algebra and Coalgebra of Stream Products. In Serge Haddad and Daniele Varacca, editors, 32nd International Conference on Concurrency Theory (CONCUR 2021), volume 203 of Leibniz International Proceedings in Informatics (LIPIcs), pages 19:1-19:17, Dagstuhl, Germany, 2021. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.CONCUR.2021.19.
  15. Alin Bostan, Arnaud Carayol, Florent Koechlin, and Cyril Nicaud. Weakly-Unambiguous Parikh Automata and Their Link to Holonomic Series. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, Proc. of ICALP'20, volume 168 of LIPIcs, pages 114:1-114:16, Dagstuhl, Germany, 2020. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.ICALP.2020.114.
  16. Alin Bostan and Antonio Jiménez-Pastor. On the exponential generating function of labelled trees. Comptes Rendus. Mathématique, 358(9-10):1005-1009, 2020. URL: https://doi.org/10.5802/crmath.108.
  17. François Boulier, Daniel Lazard, François Ollivier, and Michel Petitot. Computing representations for radicals of finitely generated differential ideals. Applicable Algebra in Engineering, Communication and Computing, 20(1):73, 2009. URL: https://doi.org/10.1007/s00200-009-0091-7.
  18. Richard Büchi. Weak second-order arithmetic and finite automata. Z. Math. Logik und grundl. Math., 6:66-92, 1960. URL: https://doi.org/10.1002/malq.19600060105.
  19. Alex Buna-Marginean, Vincent Cheval, Mahsa Shirmohammadi, and James Worrell. On learning polynomial recursive programs. Proceedings of the ACM on Programming Languages, 8(POPL):1001-1027, January 2024. URL: https://doi.org/10.1145/3632876.
  20. Michaël Cadilhac, Filip Mazowiecki, Charles Paperman, Michał Pilipczuk, and Géraud Sénizergues. On polynomial recursive sequences. Theory of Computing Systems, 2021. URL: https://doi.org/10.1007/s00224-021-10046-9.
  21. Søren Christensen. Decidability and Decomposition in Process Algebras. PhD thesis, Department of Computer Science, University of Edinburgh, 1993. Google Scholar
  22. Søren Christensen, Yoram Hirshfeld, and Faron Moller. Bisimulation equivalence is decidable for basic parallel processes. In CONCURquotesingle93, pages 143-157. Springer Berlin Heidelberg, 1993. URL: https://doi.org/10.1007/3-540-57208-2_11.
  23. Lorenzo Clemente. On the complexity of the universality and inclusion problems for unambiguous context-free grammars. In Laurent Fribourg and Matthias Heizmann, editors, Proceedings 8th International Workshop on Verification and Program Transformation and 7th Workshop on Horn Clauses for Verification and Synthesis, Dublin, Ireland, 25-26th April 2020, volume 320 of EPTCS, pages 29-43. Open Publishing Association, 2020. URL: https://doi.org/10.4204/EPTCS.320.2.
  24. Lorenzo Clemente. Weighted basic parallel processes and combinatorial enumeration. arXiv e-prints, page arXiv:2407.03638, July 2024. URL: https://doi.org/10.48550/arXiv.2407.03638.
  25. David A. Cox, John Little, and Donal O'Shea. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics. Springer International Publishing, 4 edition, 2015. Google Scholar
  26. Wojciech Czerwiński and Piotr Hofman. Language Inclusion for Boundedly-Ambiguous Vector Addition Systems Is Decidable. In Bartek Klin, Sławomir Lasota, and Anca Muscholl, editors, 33rd International Conference on Concurrency Theory (CONCUR 2022), volume 243 of Leibniz International Proceedings in Informatics (LIPIcs), pages 16:1-16:22, Dagstuhl, Germany, 2022. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.CONCUR.2022.16.
  27. Manfred Droste, Werner Kuich, and Heiko Vogler, editors. Handbook of Weighted Automata. Monographs in Theoretical Computer Science. Springer, 2009. Google Scholar
  28. Calvin C. Elgot. Decision problems of finite automata design and related arithmetics. Transactions of the American Mathematical Society, 98(1):21-51, 1961. URL: https://doi.org/doi:10.1090/S0002-9947-1961-0139530-9.
  29. Javier Esparza. Petri nets, commutative context-free grammars, and basic parallel processes. Fundamenta Informaticae, 31(1):13-25, 1997. URL: https://doi.org/10.3233/fi-1997-3112.
  30. Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press, 2009. Google Scholar
  31. Michel Fliess. Sur divers produits de séries formelles. Bulletin de la Société Mathématique de France, 102:181-191, 1974. URL: https://doi.org/10.24033/bsmf.1777.
  32. Michel Fliess. Réalisation locale des systèmes non linéaires, algèbres de lie filtrées transitives et séries génératrices non commutatives. Inventiones Mathematicae, 71(3):521-537, March 1983. URL: https://doi.org/10.1007/bf02095991.
  33. Vojtěch Forejt, Petr Jančar, Stefan Kiefer, and James Worrell. Language equivalence of probabilistic pushdown automata. Information and Computation, 237:1-11, 2014. URL: https://doi.org/10.1016/j.ic.2014.04.003.
  34. Andrei Gabrielov and Nicolai Vorobjov. Complexity of computations with pfaffian and noetherian functions. In Y Ilyashenko and C Rousseau, editors, Normal Forms, Bifurcations and Finiteness Problems in Differential Equations, NATO Science Series II, page 211. Springer, January 2004. Google Scholar
  35. Sheila A. Greibach. A new normal-form theorem for context-free phrase structure grammars. Journal of the ACM, 12(1):42-52, January 1965. URL: https://doi.org/10.1145/321250.321254.
  36. Yoram Hirshfeld. Petri nets and the equivalence problem. In Egon Börger, Yuri Gurevich, and Karl Meinke, editors, Computer Science Logic, pages 165-174, Berlin, Heidelberg, 1994. Springer Berlin Heidelberg. Google Scholar
  37. John Hopcroft, Rajeev Motwani, and Jeffrey Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, 2000. Google Scholar
  38. Ehud Hrushovski, Joël Ouaknine, Amaury Pouly, and James Worrell. Polynomial invariants for affine programs. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '18, pages 530-539, New York, NY, USA, 2018. Association for Computing Machinery. URL: https://doi.org/10.1145/3209108.3209142.
  39. Ehud Hrushovski, Joël Ouaknine, Amaury Pouly, and James Worrell. On strongest algebraic program invariants. J. ACM, August 2023. Just Accepted. URL: https://doi.org/10.1145/3614319.
  40. Hans Hüttel. Undecidable equivalences for basic parallel processes. In Theoretical Aspects of Computer Software. TACS 1994, pages 454-464. Springer Berlin Heidelberg, 1994. URL: https://doi.org/10.1007/3-540-57887-0_110.
  41. Hans Hüttel, Naoki Kobayashi, and Takashi Suto. Undecidable equivalences for basic parallel processes. Information and Computation, 207(7):812-829, July 2009. URL: https://doi.org/10.1016/j.ic.2008.12.011.
  42. Petr Jančar. Nonprimitive recursive complexity and undecidability for petri net equivalences. Theoretical Computer Science, 256(1):23-30, 2001. ISS. URL: https://doi.org/10.1016/S0304-3975(00)00100-6.
  43. Petr Jančar. Strong bisimilarity on basic parallel processes in PSPACE-complete. In Proc. of LICS'03, pages 218-227, 2003. URL: https://doi.org/10.1109/LICS.2003.1210061.
  44. Johannes Mittmann. Independence in Algebraic Complexity Theory. PhD thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, December 2013. URL: https://hdl.handle.net/20.500.11811/5810.
  45. André Joyal. Une théorie combinatoire des séries formelles. Advances in Mathematics, 42(1):1-82, 1981. Google Scholar
  46. Manuel Kauers and Peter Paule. The Concrete Tetrahedron: Symbolic Sums, Recurrence Equations, Generating Functions, Asymptotic Estimates. Texts and Monographs in Symbolic Computation. Springer-Verlag Wien, 1 edition, 2011. Google Scholar
  47. S. C. Kleene. Representation of events in nerve nets and finite automata. In Shannon and Mccarthy, editors, Automata Studies, pages 3-41. Princeton Univ. Press, 1956. URL: http://www.rand.org/pubs/research_memoranda/RM704.html.
  48. E. R. Kolchin. Differential Algebra and Algebraic Groups. Pure and Applied Mathematics 54. Academic Press, Elsevier, 1973. Google Scholar
  49. Pierre Leroux and Gérard X. Viennot. Combinatorial resolution of systems of differential equations, i. ordinary differential equations. In Gilbert Labelle and Pierre Leroux, editors, Combinatoire énumérative, pages 210-245, Berlin, Heidelberg, 1986. Springer Berlin Heidelberg. URL: https://doi.org/10.1007/BFb0072518.
  50. L Lipshitz. The diagonal of a d-finite power series is d-finite. Journal of Algebra, 113(2):373-378, 1988. URL: https://doi.org/10.1016/0021-8693(88)90166-4.
  51. Leonard Lipshitz. D-finite power series. Journal of Algebra, 122(2):353-373, 1989. URL: https://doi.org/10.1016/0021-8693(89)90222-6.
  52. Prince Mathew, Vincent Penelle, Prakash Saivasan, and A.V. Sreejith. Weighted One-Deterministic-Counter Automata. In Patricia Bouyer and Srikanth Srinivasan, editors, Proc. of FSTTCS'23, volume 284 of Leibniz International Proceedings in Informatics (LIPIcs), pages 39:1-39:23, Dagstuhl, Germany, 2023. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.FSTTCS.2023.39.
  53. Ernst Mayr. Membership in polynomial ideals over q is exponential space complete. In B. Monien and R. Cori, editors, In Proc. of STACS'89, pages 400-406, Berlin, Heidelberg, 1989. Springer Berlin Heidelberg. URL: https://doi.org/10.1007/BFb0029002.
  54. Ernst W. Mayr and Jeremias Weihmann. Completeness Results for Generalized Communication-Free Petri Nets with Arbitrary Edge Multiplicities, pages 209-221. Springer Berlin Heidelberg, 2013. URL: https://doi.org/10.1007/978-3-642-41036-9_19.
  55. Robin Milner. A calculus of communicating systems. Lecture Notes in Computer Science 92. Springer-Verlag Berlin Heidelberg, 1 edition, 1980. Google Scholar
  56. Julian Müllner, Marcel Moosbrugger, and Laura Kovács. Strong Invariants Are Hard: On the Hardness of Strongest Polynomial Invariants for (Probabilistic) Programs. arXiv e-prints, page arXiv:2307.10902, July 2023. URL: https://doi.org/10.48550/arXiv.2307.10902.
  57. Filip Murlak, Damian Niwiński, and Wojciech Rytter, editors. 200 Problems on Languages, Automata, and Computation. Cambridge University Press, March 2023. URL: https://doi.org/10.1017/9781009072632.
  58. Masakazu Nasu and Namio Honda. Mappings induced by pgsm-mappings and some recursively unsolvable problems of finite probabilistic automata. Information and Control, 15(3):250-273, September 1969. URL: https://doi.org/10.1016/s0019-9958(69)90449-5.
  59. Dmitri Novikov and Sergei Yakovenko. Trajectories of polynomial vector fields and ascending chains of polynomial ideals. Annales de l'Institut Fourier, 49(2):563-609, 1999. Google Scholar
  60. Azaria Paz. Introduction to Probabilistic Automata. Computer Science and Applied Mathematics. Elsevier Inc, Academic Press Inc, 1971. Google Scholar
  61. Carine Pivoteau, Bruno Salvy, and Michèle Soria. Algorithms for combinatorial structures: Well-founded systems and Newton iterations. Journal of Combinatorial Theory, Series A, 119(8):1711-1773, 2012. Google Scholar
  62. André Platzer. Logical Foundations of Cyber-Physical Systems. Springer International Publishing, 1st ed. edition, 2018. Google Scholar
  63. André Platzer and Yong Kiam Tan. Differential equation invariance axiomatization. J. ACM, 67(1), April 2020. Google Scholar
  64. Michael O. Rabin and Dana Scott. Finite automata and their decision problems. IBM J. Res. Dev., 3(2):114-125, April 1959. URL: https://doi.org/10.1147/rd.32.0114.
  65. Antonio Restivo and Christophe Reutenauer. On cancellation properties of languages which are supports of rational power series. J. Comput. Syst. Sci., 29(2):153-159, October 1984. URL: https://doi.org/10.1016/0022-0000(84)90026-6.
  66. Christophe Reutenauer. The Local Realization of Generating Series of Finite Lie Rank, pages 33-43. Springer Netherlands, 1986. URL: https://doi.org/10.1007/978-94-009-4706-1_2.
  67. Walter J. Savitch. Relationships between nondeterministic and deterministic tape complexities. Journal of Computer and System Sciences, 4(2):177-192, 1970. URL: https://doi.org/10.1016/S0022-0000(70)80006-X.
  68. Marcel Paul Schützenberger. On the definition of a family of automata. Information and Control, 4(2-3):245-270, September 1961. URL: https://doi.org/10.1016/s0019-9958(61)80020-x.
  69. A. Seidenberg. Constructions in algebra. Transactions of the American Mathematical Society, 197:273-313, 1974. URL: https://doi.org/10.2307/1996938.
  70. Jiří Srba. Strong bisimilarity and regularity of basic parallel processes is PSPACE-hard. In STACS 2002, pages 535-546. Springer Berlin Heidelberg, 2002. URL: https://doi.org/10.1007/3-540-45841-7_44.
  71. R. P. Stanley. Differentiably finite power series. European Journal of Combinatorics, 1(2):175-188, 1980. URL: https://doi.org/10.1016/S0195-6698(80)80051-5.
  72. Richard Stanley. Enumerative combinatorics, volume 1 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2ed edition, 2011. Google Scholar
  73. R. E. Stearns and H. B. Hunt III. On the equivalence and containment problems for unambiguous regular expressions, regular grammars and finite automata. SIAM Journal on Computing, 14(3):598-611, August 1985. URL: https://doi.org/10.1137/0214044.
  74. B. A. Trakhtenbrot. Finite automata and the logic of one-place predicates. Siberian Math. J., 1962. Google Scholar
  75. A. M. Turing. On computable numbers, with an application to the entscheidungsproblem. Proceedings of the London Mathematical Society, s2-42(1):230-265, 1937. URL: https://doi.org/10.1112/plms/s2-42.1.230.
  76. Wen-Guey Tzeng. A polynomial-time algorithm for the equivalence of probabilistic automata. SIAM J. Comput., 21(2):216-227, April 1992. URL: https://doi.org/10.1137/0221017.
  77. Joris van der Hoeven and John Shackell. Complexity bounds for zero-test algorithms. Journal of Symbolic Computation, 41(9):1004-1020, 2006. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail