Scalable Harmonious Simplification of Isolines

Authors Steven van den Broek , Wouter Meulemans , Andreas Reimer, Bettina Speckmann



PDF
Thumbnail PDF

File

LIPIcs.COSIT.2024.8.pdf
  • Filesize: 2.4 MB
  • 20 pages

Document Identifiers

Author Details

Steven van den Broek
  • TU Eindhoven, The Netherlands
Wouter Meulemans
  • TU Eindhoven, The Netherlands
Andreas Reimer
  • TU Eindhoven, The Netherlands
  • Arnold-Bode-Schule Kassel, Germany
Bettina Speckmann
  • TU Eindhoven, The Netherlands

Cite AsGet BibTex

Steven van den Broek, Wouter Meulemans, Andreas Reimer, and Bettina Speckmann. Scalable Harmonious Simplification of Isolines. In 16th International Conference on Spatial Information Theory (COSIT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 315, pp. 8:1-8:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.COSIT.2024.8

Abstract

Isolines visually characterize scalar fields by connecting all points of the same value by a closed curve at repeated intervals. They work only as a set which gives the viewer an indication of the shape of the underlying field. Hence, when simplifying isolines it is important that the correspondence - the harmony - between adjacent isolines is preserved whenever it is present. The majority of state-of-the-art simplification methods treat isolines independently; at best they avoid collisions between adjacent simplified isolines. A notable exception is the work by Van Goethem et al. (2021) who were the first to introduce the concept of harmony between adjacent isolines explicitly as an algorithmic design principle. They presented a proof-of-concept algorithm that harmoniously simplifies a sequence of polylines. However, the sets of isolines of scalar fields, most notably terrain, consist of closed curves which are nested in arbitrarily complex ways and not of an ordered sequence of polylines. In this paper we significantly extend the work by Van Goethem et al. (2021) to capture harmony in general sets of isolines. Our new simplification algorithm can handle sets of isolines describing arbitrary scalar fields and is more efficient, allowing us to harmoniously simplify terrain with hundreds of thousands of vertices. We experimentally compare our method to the results of Van Goethem et al. (2021) on bundles of isolines and to general simplification methods on isolines extracted from DEMs of Antartica. Our results indicate that our method efficiently preserves the harmony in the simplified maps, which are thereby less noisy, cartographically more meaningful, and easier to read.

Subject Classification

ACM Subject Classification
  • Information systems → Geographic information systems
  • Theory of computation → Computational geometry
Keywords
  • Simplification
  • isolines
  • harmony

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Sergey Bereg. An approximate morphing between polylines. International Journal of Computational Geometry & Applications, 15(2):193-208, 2005. URL: https://doi.org/10.1142/S0218195905001658.
  2. Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational geometry: algorithms and applications. Springer, third edition, 2008. URL: https://doi.org/10.1007/978-3-540-77974-2.
  3. Harry Blum. A transformation for extracting new descriptions of shape. Models for the perception of speech and visual form, pages 362-380, 1967. Google Scholar
  4. Jean-Daniel Boissonnat, Olivier Devillers, René Schott, Monique Teillaud, and Mariette Yvinec. Applications of random sampling to on-line algorithms in computational geometry. Discrete & Computational Geometry, 8:51-71, 1992. URL: https://doi.org/10.1007/BF02293035.
  5. Prosenjit Bose, Sergio Cabello, Otfried Cheong, Joachim Gudmundsson, Marc van Kreveld, and Bettina Speckmann. Area-preserving approximations of polygonal paths. Journal of Discrete Algorithms, 4(4):554-566, 2006. URL: https://doi.org/10.1016/J.JDA.2005.06.008.
  6. Kevin Buchin, Maike Buchin, Wouter Meulemans, and Bettina Speckmann. Locally correct Fréchet matchings. Computational Geometry, 76:1-18, 2019. URL: https://doi.org/10.1016/J.COMGEO.2018.09.002.
  7. Kevin Buchin, Yago Diez, Tom van Diggelen, and Wouter Meulemans. Efficient trajectory queries under the Fréchet distance (GIS cup). In Proc. 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pages 101:1-101:4. ACM, 2017. URL: https://doi.org/10.1145/3139958.3140064.
  8. Kevin Buchin, Wouter Meulemans, André van Renssen, and Bettina Speckmann. Area-preserving simplification and schematization of polygonal subdivisions. ACM Transactions on Spatial Algorithms and Systems, 2(1):2:1-2:36, 2016. URL: https://doi.org/10.1145/2818373.
  9. Katrin Dobrindt and Mariette Yvinec. Remembering conflicts in history yields dynamic algorithms. In Proc. 4th International Symposium on Algorithms and Computation, volume 762, pages 21-30. Springer, 1993. URL: https://doi.org/10.1007/3-540-57568-5_231.
  10. David H. Douglas and Thomas K. Peucker. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica, 10(2):112-122, 1973. URL: https://doi.org/10.3138/FM57-6770-U75U-7727.
  11. Christopher Dyken, Morten Dæhlen, and Thomas Sevaldrud. Simultaneous curve simplification. Journal of Geographical Systems, 11(3):273-289, 2009. URL: https://doi.org/10.1007/S10109-009-0078-8.
  12. Andreas Fabri. 2D polyline simplification. In CGAL User and Reference Manual. CGAL Editorial Board, 5.6.1 edition, 2024. URL: https://doc.cgal.org/5.6.1/Manual/packages.html#PkgPolylineSimplification2.
  13. Efi Fogel, Ophir Setter, Ron Wein, Guy Zucker, Baruch Zukerman, and Dan Halperin. 2D regularized Boolean set-operations. In CGAL User and Reference Manual. CGAL Editorial Board, 5.6.1 edition, 2024. URL: https://doc.cgal.org/5.6.1/Manual/packages.html#PkgBooleanSetOperations2.
  14. Arthur van Goethem, Wouter Meulemans, Andreas Reimer, and Bettina Speckmann. Simplification with parallelism. In Proc. 23rd ICA Workshop on Generalisation and Multiple Representation, 2020. Google Scholar
  15. Arthur van Goethem, Wouter Meulemans, Andreas Reimer, and Bettina Speckmann. Harmonious simplification of isolines. In Proc. 11th International Conference on Geographic Information Science, pages 8:1-8:16, 2021. URL: https://doi.org/10.4230/LIPICS.GISCIENCE.2021.II.8.
  16. Alan H. Goldman. Aesthetic qualities and aesthetic value. The Journal of Philosophy, 87(1):23-37, 1990. URL: https://doi.org/10.2307/2026797.
  17. Eric Guilbert, Julien Gaffuri, and Bernhard Jenny. Terrain generalisation. In Abstracting Geographic Information in a Data Rich World, LNGC, pages 227-258. Springer, 2014. URL: https://doi.org/10.1007/978-3-319-00203-3_8.
  18. Paul S. Heckbert and Michael Garland. Survey of polygonal surface simplification algorithms. Technical report, DTIC, 1997. Google Scholar
  19. Thijs van den Horst and Tim Ophelders. Faster Fréchet distance approximation through truncated smoothing, 2024. Preprint. URL: https://arxiv.org/abs/2401.14815.
  20. Ian Howat, Claire Porter, Myoung-Jon Noh, Erik Husby, Samuel Khuvis, Evan Danish, Karen Tomko, Judith Gardiner, Adelaide Negrete, Bidhyananda Yadav, James Klassen, Cole Kelleher, Michael Cloutier, Jesse Bakker, Jeremy Enos, Galen Arnold, Greg Bauer, and Paul Morin. The Reference Elevation Model of Antarctica - Mosaics, Version 2, 2022. URL: https://doi.org/10.7910/DVN/EBW8UC.
  21. Ian M. Howat, Claire Porter, Benjamin E. Smith, Myoung-Jong Noh, and Paul Morin. The reference elevation model of Antarctica. The Cryosphere, 13(2):665-674, 2019. URL: https://doi.org/10.5194/tc-13-665-2019.
  22. Eduard Imhof. Kartographische Geländedarstellung. De Gruyter, 1965. URL: https://doi.org/10.1515/9783110843583.
  23. Menelaos Karavelas. 2D segment Delaunay graphs. In CGAL User and Reference Manual. CGAL Editorial Board, 5.6.1 edition, 2024. URL: https://doc.cgal.org/5.6.1/Manual/packages.html#PkgSegmentDelaunayGraph2.
  24. Menelaos I. Karavelas. A robust and efficient implementation for the segment Voronoi diagram. In Proc. International symposium on Voronoi diagrams in science and engineering, pages 51-62, 2004. Google Scholar
  25. Barry J. Kronenfeld, Lawrence V. Stanislawski, Barbara P. Buttenfield, and Tyler Brockmeyer. Simplification of polylines by segment collapse: minimizing areal displacement while preserving area. International Journal of Cartography, 6(1):22-46, 2020. URL: https://doi.org/10.1080/23729333.2019.1631535.
  26. Thomas Mendel. Area-preserving subdivision simplification with topology constraints: Exactly and in practice. In Proc. 20th Workshop on Algorithm Engineering and Experiments, pages 117-128. SIAM, 2018. URL: https://doi.org/10.1137/1.9781611975055.11.
  27. Ravi Peters, Hugo Ledoux, and Martijn Meijers. A Voronoi-based approach to generating depth-contours for hydrographic charts. Marine Geodesy, 37(2):145-166, 2014. URL: https://doi.org/10.1080/01490419.2014.902882.
  28. Urs Ramer. An iterative procedure for the polygonal approximation of plane curves. Computer Graphics and Image Processing, 1(3):244-256, 1972. URL: https://doi.org/10.1016/S0146-664X(72)80017-0.
  29. Nicolas Regnauld and Robert B McMaster. A synoptic view of generalisation operators. In Generalisation of geographic information, pages 37-66. Elsevier, 2007. URL: https://doi.org/10.1016/B978-008045374-3/50005-3.
  30. Andreas Reimer. Cartographic modelling for automated map generation. PhD thesis, Technische Universiteit Eindhoven, 2015. Google Scholar
  31. Xiaohua Tong, Yanmin Jin, Lingyun Li, and Tinghua Ai. Area-preservation simplification of polygonal boundaries by the use of the structured total least squares method with constraints. Transactions in GIS, 19(5):780-799, 2015. URL: https://doi.org/10.1111/TGIS.12130.
  32. Dražen Tutić and Miljenko Lapaine. Area preserving cartographic line generalizaton. Kartografija i geoinformacije (Cartography and Geoinformation), 8(11):84-100, 2009. Google Scholar
  33. Robert Weibel. Generalization of spatial data: Principles and selected algorithms. In Algorithmic Foundations of Geographic Information Systems, volume 1340 of LNCS, pages 99-152. Springer, 1996. URL: https://doi.org/10.1007/3-540-63818-0_5.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail