Brief Announcement: Distinct Gathering Under Round Robin

Authors Fabian Frei , Koichi Wada



PDF
Thumbnail PDF

File

LIPIcs.DISC.2024.48.pdf
  • Filesize: 0.61 MB
  • 8 pages

Document Identifiers

Author Details

Fabian Frei
  • CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
  • Department of Computer Science, ETH Zürich, Switzerland
Koichi Wada
  • Hosei University, Tokyo, Japan

Acknowledgements

We are very grateful to all reviewers who helped us to improve this paper.

Cite AsGet BibTex

Fabian Frei and Koichi Wada. Brief Announcement: Distinct Gathering Under Round Robin. In 38th International Symposium on Distributed Computing (DISC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 319, pp. 48:1-48:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.DISC.2024.48

Abstract

We resolve one of the longest-standing questions about autonomous mobile robots in a surprising way. Distinct Gathering is the fundamental cooperation task of letting robots, initially scattered across the plane in distinct locations, gather in an arbitrary single point. The scheduler Round Robin cyclically activates the robots one by one in a fixed order. When activated, a robot perceives all robot locations and moves wherever it wants based only on this information. For n = 2 robots, the task is trivial. What happens for n ≥ 3 has remained an open problem for decades by now. The established conjecture declares the task to be impossible in this case. We prove that it is indeed impossible for n = 3 but, to great surprise, possible again for any n ≥ 4. We go beyond the standard requirements by providing a very robust algorithm that does not require any consistency or self-consistency for the local Cartesian maps perceived by the robots and works even for non-rigid movement, that is, if robots may be unpredictably stopped and deactivated during a movement.

Subject Classification

ACM Subject Classification
  • Computer systems organization → Robotic autonomy
Keywords
  • Autonomous mobile robots
  • Distinct Gathering
  • Round Robin

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. N. Agmon and D. Peleg. Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM Journal on Computing, 36(1):56-82, 2006. URL: https://doi.org/10.1137/050645221.
  2. H. Ando, Y. Osawa, I. Suzuki, and M. Yamashita. A distributed memoryless point convergence algorithm for mobile robots with limited visivility. IEEE Transactions on Robotics and Automation, 15(5):818-828, 1999. URL: https://doi.org/10.1109/70.795787.
  3. Z. Bouzid, S. Das, and S. Tixeuil. Gathering of mobile robots tolerating multiple crash faults. In the 33rd Int. Conf. on Distributed Computing Systems, pages 334-346, 2013. Google Scholar
  4. S. Cicerone, Di Stefano, and A. Navarra. Gathering of robots on meeting-points. Distributed Computing, 31(1):1-50, 2018. Google Scholar
  5. M. Cieliebak, P. Flocchini, G. Prencipe, and N. Santoro. Distributed computing by mobile robots: Gathering. SIAM Journal on Computing, 41(4):829-879, 2012. URL: https://doi.org/10.1137/100796534.
  6. R. Cohen and D. Peleg. Convergence properties of the gravitational algorithms in asynchronous robot systems. SIAM J. on Computing, 34(15):1516-1528, 2005. URL: https://doi.org/10.1137/S0097539704446475.
  7. S. Das, P. Flocchini, G. Prencipe, N. Santoro, and M. Yamashita. Autonomous mobile robots with lights. Theoretical Computer Science, 609:171-184, 2016. URL: https://doi.org/10.1016/J.TCS.2015.09.018.
  8. X. Défago, M. Potop-Butucaru, and Philippe Raipin-Parvédy. Self-stabilizing gathering of mobile robots under crash or byzantine faults. Distributed Computing, 33(5):393-421, 2020. URL: https://doi.org/10.1007/S00446-019-00359-X.
  9. Xavier Défago, Maria Potop-Butucaru, and Philippe Raipin Parvédy. Self-stabilizing gathering of mobile robots under crash or byzantine faults. Distributed Comput., 33(5):393-421, 2020. URL: https://doi.org/10.1007/s00446-019-00359-x.
  10. P. Flocchini, G. Prencipe, and N. Santoro (Eds). Distributed Computing by Mobile Entities. Springer, 2019. Google Scholar
  11. P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Gathering of asynchronous robots with limited visibility. Theoretical Computer Science, 337(1-3):147-169, 2005. URL: https://doi.org/10.1016/J.TCS.2005.01.001.
  12. P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Arbitrary pattern formation by asynchronous oblivious robots. Theoretical Computer Science, 407:412-447, 2008. Google Scholar
  13. Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed Computing by Oblivious Mobile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan and Claypool Publishers, 2012. Google Scholar
  14. Paola Flocchini, Nicola Santoro, and Koichi Wada. On memory, communication, and synchronous schedulers when moving and computing. In Proceeding of the 23rd International Conference on Principles of Distributed Systems (OPODIS 2019), volume 153 of LIPIcs, pages 25:1-25:17, 2019. URL: https://doi.org/10.4230/LIPICS.OPODIS.2019.25.
  15. N. Fujinaga, Y. Yamauchi, H. Ono, S. Kijima, and M. Yamashita. Pattern formation by oblivious asynchronous mobile robots. SIAM Journal on Computing, 44(3):740-785, 2015. URL: https://doi.org/10.1137/140958682.
  16. V. Gervasi and G. Prencipe. Coordination without communication: The case of the flocking problem. Discrete Applied Mathematics, 144(3):324-344, 2004. URL: https://doi.org/10.1016/J.DAM.2003.11.010.
  17. T. Izumi, Y. Katayama, N. Inuzuka, and K. Wada. Gathering autonomous mobile robots with dynamic compasses: An optimal result. In 21st DISC, pages 298-312, 2007. Google Scholar
  18. T. Izumi, S. Souissi, Y. Katayama, N. Inuzuka, X. Défago, K. Wada, and M. Yamashita. The gathering problem for two oblivious robots with unreliable compasses. SIAM Journal on Computing, 41(1):26-46, 2012. URL: https://doi.org/10.1137/100797916.
  19. J. Lin, A.S. Morse, and B.D.O. Anderson. The multi-agent rendezvous problem. parts 1 and 2. SIAM Journal on Computing, 46(6):2096-2147, 2007. Google Scholar
  20. T. Okumura, K. Wada, and X. Défago. Optimal rendezvous ℒ-algorithms for asynchronous mobile robots with external-lights. Theoretical Computer Science, 979(114198), 2023. Google Scholar
  21. Giuseppe Prencipe. On the feasibility of gathering by autonomous mobile robots. In Andrzej Pelc and Michel Raynal, editors, Proceedings of the 12th International Colloquium on Structural Information and Communication Complexity (SIROCCO 2005), volume 3499 of Lecture Notes in Computer Science, pages 246-261. Springer, 2005. URL: https://doi.org/10.1007/11429647_20.
  22. S. Souissi, X. Défago, and M. Yamashita. Using eventually consistent compasses to gather memory-less mobile robots with limited visibility. ACM Transactions on Autonomous and Adaptive Systems, 4(1):1-27, 2009. URL: https://doi.org/10.1145/1462187.1462196.
  23. S. Souissi, T. Izumi, and K. Wada. Oracle-based flocking of mobile robots in crash-recovery model. In Proc. 11th Int. Symp. on Stabilization, Safety, and Security of Distributed Systems (SSS), pages 683-697, 2009. Google Scholar
  24. I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: Formation of geometric patterns. SIAM Journal on Computing, 28:1347-1363, 1999. URL: https://doi.org/10.1137/S009753979628292X.
  25. Ichiro Suzuki and Masafumi Yamashita. Distributed anonymous mobile robots: Formation of geometric patterns. SIAM J. Comput., 28(4):1347-1363, 1999. URL: https://doi.org/10.1137/S009753979628292X.
  26. Satoshi Terai, Koichi Wada, and Yoshiaki Katayama. Gathering problems for autonomous mobile robots with lights. Theor. Comput. Sci., 941:241-261, 2023. URL: https://doi.org/10.1016/j.tcs.2022.11.018.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail