,
Christian Komusiewicz
,
Nils Morawietz
,
Frank Sommer
Creative Commons Attribution 4.0 International license
A temporal graph is a finite sequence of graphs, called snapshots, over the same vertex set. Many temporal graph problems turn out to be much more difficult than their static counterparts. One such problem is Timeline Vertex Cover (also known as MinTimeline_∞), a temporal analogue to the classical Vertex Cover problem. In this problem, one is given a temporal graph 𝒢 and two integers k and 𝓁, and the goal is to cover each edge of each snapshot by selecting for each vertex at most k activity intervals of length at most 𝓁 each. Here, an edge uv in the ith snapshot is covered, if an activity interval of u or v is active at time i. In this work, we continue the algorithmic study of Timeline Vertex Cover and introduce the Timeline Dominating Set problem where we want to dominate all vertices in each snapshot by the selected activity intervals. We analyze both problems from a classical and parameterized point of view and also consider partial problem versions, where the goal is to cover (dominate) at least t edges (vertices) of the snapshots. With respect to the parameterized complexity, we consider the temporal graph parameters vertex-interval-membership-width (vimw) and interval-membership-width (imw). We show that all considered problems admit FPT-algorithms when parameterized by vimw+k+𝓁. This provides a smaller parameter combination than the ones used for previously known FPT-algorithms for Timeline Vertex Cover. Surprisingly, for imw+k+𝓁, Timeline Dominating Set turns out to be easier than Timeline Vertex Cover, by also admitting an FPT-algorithm, whereas the vertex cover version is NP-hard even if imw+k+𝓁 is constant. We also consider parameterization by combinations of n, the vertex set size, with k or 𝓁 and parameterization by t. Here, we show for example that both partial problems are fixed-parameter tractable for t which significantly improves and generalizes a previous result for a special case of Partial Timeline Vertex Cover with k = 1.
@InProceedings{herrmann_et_al:LIPIcs.IPEC.2025.12,
author = {Herrmann, Anton and Komusiewicz, Christian and Morawietz, Nils and Sommer, Frank},
title = {{Timeline Problems in Temporal Graphs: Vertex Cover vs. Dominating Set}},
booktitle = {20th International Symposium on Parameterized and Exact Computation (IPEC 2025)},
pages = {12:1--12:18},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-407-9},
ISSN = {1868-8969},
year = {2025},
volume = {358},
editor = {Agrawal, Akanksha and van Leeuwen, Erik Jan},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2025.12},
URN = {urn:nbn:de:0030-drops-251446},
doi = {10.4230/LIPIcs.IPEC.2025.12},
annote = {Keywords: NP-hard problem, FPT-algorithm, interval-membership-width, Color coding}
}