Document

# Algorithms and Complexity for Geodetic Sets on Planar and Chordal Graphs

## File

LIPIcs.ISAAC.2020.7.pdf
• Filesize: 0.61 MB
• 15 pages

## Cite As

Dibyayan Chakraborty, Sandip Das, Florent Foucaud, Harmender Gahlawat, Dimitri Lajou, and Bodhayan Roy. Algorithms and Complexity for Geodetic Sets on Planar and Chordal Graphs. In 31st International Symposium on Algorithms and Computation (ISAAC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 181, pp. 7:1-7:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
https://doi.org/10.4230/LIPIcs.ISAAC.2020.7

## Abstract

We study the complexity of finding the geodetic number on subclasses of planar graphs and chordal graphs. A set S of vertices of a graph G is a geodetic set if every vertex of G lies in a shortest path between some pair of vertices of S. The Minimum Geodetic Set (MGS) problem is to find a geodetic set with minimum cardinality of a given graph. The problem is known to remain NP-hard on bipartite graphs, chordal graphs, planar graphs and subcubic graphs. We first study MGS on restricted classes of planar graphs: we design a linear-time algorithm for MGS on solid grids, improving on a 3-approximation algorithm by Chakraborty et al. (CALDAM, 2020) and show that MGS remains NP-hard even for subcubic partial grids of arbitrary girth. This unifies some results in the literature. We then turn our attention to chordal graphs, showing that MGS is fixed parameter tractable for inputs of this class when parameterized by their treewidth (which equals the clique number minus one). This implies a linear-time algorithm for k-trees, for fixed k. Then, we show that MGS is NP-hard on interval graphs, thereby answering a question of Ekim et al. (LATIN, 2012). As interval graphs are very constrained, to prove the latter result we design a rather sophisticated reduction technique to work around their inherent linear structure.

## Subject Classification

##### ACM Subject Classification
• Theory of computation → Design and analysis of algorithms
##### Keywords
• Geodetic set
• Planar graph
• Chordal graph
• Interval graph
• FPT algorithm

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. B. Allgeier. Structure and properties of maximal outerplanar graphs. PhD Thesis, University of Louisville, 2009.
2. R. Belmonte, P. A. Golovach, P. Heggernes, P. van't Hof, M. Kamiński, and D. Paulusma. Detecting fixed patterns in chordal graphs in polynomial time. Algorithmica, 69:501-521, 2014.
3. É. Bonnet and P. Rzążewski. Optimality program in segment and string graphs. Algorithmica, 81(7):3047-3073, 2019.
4. L. R. Bueno, L. D. Penso, F. Protti, V. R. Ramos, D. Rautenbach, and U. S. Souza. On the hardness of finding the geodetic number of a subcubic graph. Information Processing Letters, 135:22-27, 2018.
5. D. Chakraborty, S. Das, F. Foucaud, H. Gahlawat, D. Lajou, and B. Roy. Algorithms and complexity for geodetic sets on planar and chordal graphs, 2020. URL: http://arxiv.org/abs/2006.16511.
6. D. Chakraborty, F. Foucaud, H. Gahlawat, S. K. Ghosh, and B. Roy. Hardness and approximation for the geodetic set problem in some graph classes. In CALDAM'20, pages 102-115. Springer, 2020.
7. B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs. Discrete mathematics, 86(1-3):165-177, 1990.
8. M. C. Dourado, F. Protti, D. Rautenbach, and J.L. Szwarcfiter. Some remarks on the geodetic number of a graph. Discrete Mathematics, 310(4):832-837, 2010.
9. M. C. Dourado, F. Protti, and J.L. Szwarcfiter. On the complexity of the geodetic and convexity numbers of a graph. In ICDM, volume 7, pages 101-108. Ramanujan Mathematical Society, 2008.
10. T. Ekim, A. Erey, P. Heggernes, P. van’t Hof, and D. Meister. Computing minimum geodetic sets of proper interval graphs. In LATIN'12, pages 279-290. Springer, 2012.
11. M. Farber and R. E. Jamison. Convexity in graphs and hypergraphs. SIAM Journal on Algebraic Discrete Methods, 7(3):433-444, 1986.
12. A. E. Feldmann and P. Widmayer. An o(n⁴) time algorithm to compute the bisection width of solid grid graphs. In European Symposium on Algorithms, pages 143-154. Springer, 2011.
13. F. Foucaud, G. B. Mertzios, R. Naserasr, A. Parreau, and P. Valicov. Identification, location-domination and metric dimension on interval and permutation graphs. II. Algorithms and complexity. Algorithmica, 78:914-944, 2017.
14. M. R. Garey and D. S. Johnson. Computers and intractability, volume 29. W. H.Freeman New York, 2002.
15. G. C. M. Gomes, C. V. G. C. Lima, and V. F. dos Santos. Parameterized Complexity of Equitable Coloring. Discrete Mathematics & Theoretical Computer Science, vol. 21 no. 1, ICGT 2018, May 2019.
16. A. Gregori. Unit-length embedding of binary trees on a square grid. Information Processing Letters, 31(4):167-173, 1989.
17. F. Harary, E. Loukakis, and C. Tsouros. The geodetic number of a graph. Mathematical and Computer Modelling, 17(11):89-95, 1993.
18. P. Heggernes, P. van't Hof, D. Meister, and Y. Villanger. Induced subgraph isomorphism on proper interval and bipartite permutation graphs. Theoretical Computer Science, 562:252-269, 2015.
19. L. Kellerhals and T. Koana. Parameterized complexity of geodetic set. arXiv, 2020. URL: http://arxiv.org/abs/2001.03098.
20. F. Keshavarz-Kohjerdi, A. Bagheri, and A. Asgharian-Sardroud. A linear-time algorithm for the longest path problem in rectangular grid graphs. Discrete Applied Mathematics, 160(3):210-217, 2012.
21. M. Mezzini. Polynomial time algorithm for computing a minimum geodetic set in outerplanar graphs. Theoretical Computer Science, 745:63-74, 2018.
22. I. M. Pelayo. Geodesic Convexity in Graphs. Springer, 2013.
23. C. Thomassen. Interval representations of planar graphs. Journal of Combinatorial Theory, Series B, 40(1):9-20, 1986.
24. C. Umans and W. Lenhart. Hamiltonian cycles in solid grid graphs. In Proceedings 38th Annual Symposium on Foundations of Computer Science, pages 496-505. IEEE, 1997.
25. L. G. Valiant. Universality considerations in VLSI circuits. IEEE Transactions on Computers, 100(2):135-140, 1981.
X

Feedback for Dagstuhl Publishing