Document Open Access Logo

Fast Convolutions for Near-Convex Sequences

Authors Cornelius Brand , Alexandra Lassota

Thumbnail PDF


  • Filesize: 0.75 MB
  • 16 pages

Document Identifiers

Author Details

Cornelius Brand
  • Institute of Logic and Computation, Vienna University of Technology, Austria
Alexandra Lassota
  • Max Planck Institute for Informatics, SIC, Saarbrücken, Germany

Cite AsGet BibTex

Cornelius Brand and Alexandra Lassota. Fast Convolutions for Near-Convex Sequences. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 16:1-16:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


We develop algorithms for (min,+)-Convolution and related convolution problems such as Super Additivity Testing, Convolution 3-Sum and Minimum Consecutive Subsums which use the degree of convexity of the instance as a parameter. Assuming the min-plus conjecture (Künnemann-Paturi-Schneider, ICALP'17 and Cygan et al., ICALP'17), our results interpolate in an optimal manner between fully convex instances, which can be solved in near-linear time using Legendre transformations, and general non-convex sequences, where the trivial quadratic-time algorithm is conjectured to be best possible, up to subpolynomial factors.

Subject Classification

ACM Subject Classification
  • Theory of computation → Design and analysis of algorithms
  • (min,+)-convolution
  • fine-grained complexity
  • convex sequences


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Alok Aggarwal, Maria M. Klawe, Shlomo Moran, Peter W. Shor, and Robert E. Wilber. Geometric applications of a matrix-searching algorithm. Algorithmica, 2:195-208, 1987. URL:
  2. Amihood Amir, Moshe Lewenstein, and Ely Porat. Faster algorithms for string matching with k mismatches. J. Algorithms, 50(2):257-275, 2004. URL:
  3. Esther M. Arkin, Sándor P. Fekete, Ferran Hurtado, Joseph S. B. Mitchell, Marc Noy, Vera Sacristán, and Saurabh Sethia. On the reflexivity of point sets. In Frank K. H. A. Dehne, Jörg-Rüdiger Sack, and Roberto Tamassia, editors, Algorithms and Data Structures, 7th International Workshop, WADS 2001, Providence, RI, USA, August 8-10, 2001, Proceedings, volume 2125 of Lecture Notes in Computer Science, pages 192-204. Springer, 2001. URL:
  4. Kyriakos Axiotis and Christos Tzamos. Capacitated dynamic programming: Faster knapsack and graph algorithms. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 19:1-19:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL:
  5. Alexander I. Barvinok, David S. Johnson, Gerhard J. Woeginger, and Russell Woodroofe. The maximum traveling salesman problem under polyhedral norms. In Robert E. Bixby, E. Andrew Boyd, and Roger Z. Ríos-Mercado, editors, Integer Programming and Combinatorial Optimization, 6th International IPCO Conference, Houston, Texas, USA, June 22-24, 1998, Proceedings, volume 1412 of Lecture Notes in Computer Science, pages 195-201. Springer, 1998. URL:
  6. Mohammad Hossein Bateni, Mohammad Taghi Hajiaghayi, Saeed Seddighin, and Cliff Stein. Fast algorithms for knapsack via convolution and prediction. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 1269-1282. ACM, 2018. URL:
  7. Pierre Bergé, Édouard Bonnet, and Hugues Déprés. Deciding twin-width at most 4 is np-complete. In ICALP, volume 229 of LIPIcs, pages 18:1-18:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. Google Scholar
  8. Alessandra Bernardi, Enrico Carlini, Maria Virginia Catalisano, Alessandro Gimigliano, and Alessandro Oneto. The hitchhiker guide to: Secant varieties and tensor decomposition. Mathematics, 6(12), 2018. URL:
  9. Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov, and Michal Pilipczuk. A c^k n 5-approximation algorithm for treewidth. SIAM J. Comput., 45(2):317-378, 2016. Google Scholar
  10. David Bremner, Timothy M. Chan, Erik D. Demaine, Jeff Erickson, Ferran Hurtado, John Iacono, Stefan Langerman, Mihai Patrascu, and Perouz Taslakian. Necklaces, convolutions, and X+Y. Algorithmica, 69(2):294-314, 2014. URL:
  11. Karl Bringmann and Alejandro Cassis. Faster 0-1-knapsack via near-convex min-plus-convolution. CoRR, abs/2305.01593, 2023. URL:
  12. Timothy M. Chan. Approximation schemes for 0-1 knapsack. In Raimund Seidel, editor, 1st Symposium on Simplicity in Algorithms, SOSA 2018, January 7-10, 2018, New Orleans, LA, USA, volume 61 of OASIcs, pages 5:1-5:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL:
  13. Timothy M. Chan and Qizheng He. Reducing 3sum to convolution-3sum. In Martin Farach-Colton and Inge Li Gørtz, editors, SOSA, pages 1-7. SIAM, 2020. URL:
  14. Timothy M. Chan and Moshe Lewenstein. Clustered integer 3sum via additive combinatorics. In Rocco A. Servedio and Ronitt Rubinfeld, editors, STOC 2015, pages 31-40. ACM, 2015. URL:
  15. Timothy M. Chan and R. Ryan Williams. Deterministic apsp, orthogonal vectors, and more: Quickly derandomizing razborov-smolensky. ACM Trans. Algorithms, 17(1):2:1-2:14, 2021. URL:
  16. Shucheng Chi, Ran Duan, Tianle Xie, and Tianyi Zhang. Faster min-plus product for monotone instances. In Stefano Leonardi and Anupam Gupta, editors, STOC. ACM, 2022. URL:
  17. V. Chvatal. A greedy heuristic for the set-covering problem. Mathematics of Operations Research, 4(3):233-235, 1979. Google Scholar
  18. Bruno Courcelle. Monadic second-order logic and hypergraph orientation. In LICS, pages 179-190. IEEE Computer Society, 1993. Google Scholar
  19. Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. On problems equivalent to (min, +)-convolution. ACM Trans. Algorithms, 15(1):14:1-14:25, 2019. URL:
  20. Mike Develin. Tropical secant varieties of linear spaces. Discrete & Computational Geometry, 35:117-129, 2006. Google Scholar
  21. Mike Develin, Francisco Santos, and Bernd Sturmfels. On the rank of a tropical matrix. Combinatorial and computational geometry, 52:213-242, 2005. Google Scholar
  22. Archontia C. Giannopoulou, George B. Mertzios, and Rolf Niedermeier. Polynomial fixed-parameter algorithms: A case study for longest path on interval graphs. Theor. Comput. Sci., 689:67-95, 2017. URL:
  23. Jan M. Hochstein and Karsten Weihe. Maximum s-t-flow with k crossings in O(k^3n log n) time. In Nikhil Bansal, Kirk Pruhs, and Clifford Stein, editors, SODA, pages 843-847. SIAM, 2007. URL:
  24. Ioannis Koutis, Gary L. Miller, and Richard Peng. A nearly-m log n time solver for SDD linear systems. In Rafail Ostrovsky, editor, FOCS, pages 590-598. IEEE Computer Society, 2011. URL:
  25. Marvin Künnemann, Ramamohan Paturi, and Stefan Schneider. On the fine-grained complexity of one-dimensional dynamic programming. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, ICALP, volume 80 of LIPIcs, pages 21:1-21:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL:
  26. Eduardo Sany Laber, Wilfredo Bardales Roncalla, and Ferdinando Cicalese. On lower bounds for the maximum consecutive subsums problem and the (min, +)-convolution. In IEEE, pages 1807-1811. IEEE, 2014. URL:
  27. Yves Lucet. Faster than the fast legendre transform, the linear-time legendre transform. Numer. Algorithms, 16(2):171-185, 1997. URL:
  28. George B. Mertzios, André Nichterlein, and Rolf Niedermeier. The power of linear-time data reduction for maximum matching. Algorithmica, 82(12):3521-3565, 2020. URL:
  29. Mihai Patrascu. Towards polynomial lower bounds for dynamic problems. In Leonard J. Schulman, editor, STOC, pages 603-610. ACM, 2010. URL:
  30. Yaroslav Shitov. The complexity of tropical matrix factorization. Advances in Mathematics, 254:138-156, 2014. Google Scholar
  31. Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In David B. Shmoys, editor, STOC, pages 664-673. ACM, 2014. URL:
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail