FPT Approximation Using Treewidth: Capacitated Vertex Cover, Target Set Selection and Vector Dominating Set

Authors Huairui Chu, Bingkai Lin



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2023.19.pdf
  • Filesize: 0.87 MB
  • 20 pages

Document Identifiers

Author Details

Huairui Chu
  • Nanjing University, China
Bingkai Lin
  • Nanjing University, China

Cite AsGet BibTex

Huairui Chu and Bingkai Lin. FPT Approximation Using Treewidth: Capacitated Vertex Cover, Target Set Selection and Vector Dominating Set. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 19:1-19:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.ISAAC.2023.19

Abstract

Treewidth is a useful tool in designing graph algorithms. Although many NP-hard graph problems can be solved in linear time when the input graphs have small treewidth, there are problems which remain hard on graphs of bounded treewidth. In this paper, we consider three vertex selection problems that are W[1]-hard when parameterized by the treewidth of the input graph, namely the capacitated vertex cover problem, the target set selection problem and the vector dominating set problem. We provide two new methods to obtain FPT approximation algorithms for these problems. For the capacitated vertex cover problem and the vector dominating set problem, we obtain (1+o(1))-approximation FPT algorithms. For the target set selection problem, we give an FPT algorithm providing a tradeoff between its running time and the approximation ratio.

Subject Classification

ACM Subject Classification
  • Theory of computation → Fixed parameter tractability
Keywords
  • FPT approximation algorithm
  • Treewidth
  • Capacitated vertex cover
  • Target set selection
  • Vector dominating set

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Karl R. Abrahamson, Rodney G. Downey, and Michael R. Fellows. Fixed-parameter tractability and completeness IV: on completeness for W[P] and PSPACE analogues. Ann. Pure Appl. Log., 73(3):235-276, 1995. URL: https://doi.org/10.1016/0168-0072(94)00034-Z.
  2. Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-decomposable graphs. Journal of Algorithms, 12(2):308-340, 1991. Google Scholar
  3. Oren Ben-Zwi, Danny Hermelin, Daniel Lokshtanov, and Ilan Newman. Treewidth governs the complexity of target set selection. Discrete Optimization, 8(1):87-96, 2011. Google Scholar
  4. Nadja Betzler, Robert Bredereck, Rolf Niedermeier, and Johannes Uhlmann. On bounded-degree vertex deletion parameterized by treewidth. Discrete Applied Mathematics, 160(1-2):53-60, 2012. Google Scholar
  5. Hans L Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth. In Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages 226-234, 1993. Google Scholar
  6. Hans L Bodlaender. A tourist guide through treewidth. Acta cybernetica, 11(1-2):1, 1994. Google Scholar
  7. Hans L. Bodlaender and Torben Hagerup. Parallel algorithms with optimal speedup for bounded treewidth. SIAM J. Comput., 27(6):1725-1746, 1998. URL: https://doi.org/10.1137/S0097539795289859.
  8. Moses Charikar, Yonatan Naamad, and Anthony Wirth. On approximating target set selection. In Klaus Jansen, Claire Mathieu, José D. P. Rolim, and Chris Umans, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2016, September 7-9, 2016, Paris, France, volume 60 of LIPIcs, pages 4:1-4:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.4.
  9. Moses Charikar, Yonatan Naamad, and Anthony Wirth. On approximating target set selection. Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016), 2016. Google Scholar
  10. Ning Chen. On the approximability of influence in social networks. SIAM Journal on Discrete Mathematics, 23(3):1400-1415, 2009. Google Scholar
  11. Wang Chi Cheung, Michel X Goemans, and Sam Chiu-wai Wong. Improved algorithms for vertex cover with hard capacities on multigraphs and hypergraphs. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1714-1726. SIAM, 2014. Google Scholar
  12. Julia Chuzhoy and Joseph Naor. Covering problems with hard capacities. SIAM Journal on Computing, 36(2):498-515, 2006. Google Scholar
  13. Ferdinando Cicalese, Martin Milanič, and Ugo Vaccaro. On the approximability and exact algorithms for vector domination and related problems in graphs. Discrete Applied Mathematics, 161(6):750-767, 2013. Google Scholar
  14. Bruno Courcelle. Graph rewriting: An algebraic and logic approach. In Formal Models and Semantics, pages 193-242. Elsevier, 1990. Google Scholar
  15. Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 5. Springer, 2015. Google Scholar
  16. Irit Dinur. Mildly exponential reduction from gap 3sat to polynomial-gap label-cover. Electron. Colloquium Comput. Complex., page 128, 2016. URL: https://eccc.weizmann.ac.il/report/2016/128.
  17. Michael Dom, Daniel Lokshtanov, Saket Saurabh, and Yngve Villanger. Capacitated domination and covering: A parameterized perspective. In International Workshop on Parameterized and Exact Computation, pages 78-90. Springer, 2008. Google Scholar
  18. Rodney G Downey and Michael R Fellows. Fundamentals of parameterized complexity, volume 4. Springer, 2013. Google Scholar
  19. Andreas Emil Feldmann, Euiwoong Lee, and Pasin Manurangsi. A survey on approximation in parameterized complexity: Hardness and algorithms. Algorithms, 13(6):146, 2020. Google Scholar
  20. Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006. Google Scholar
  21. Fedor V Fomin, Serge Gaspers, Daniel Lokshtanov, and Saket Saurabh. Exact algorithms via monotone local search. Journal of the ACM (JACM), 66(2):1-23, 2019. Google Scholar
  22. Rajiv Gandhi, Eran Halperin, Samir Khuller, Guy Kortsarz, and Aravind Srinivasan. An improved approximation algorithm for vertex cover with hard capacities. Journal of Computer and System Sciences, 72(1):16-33, 2006. Google Scholar
  23. Martin Grohe. Logic, graphs, and algorithms. In Jörg Flum, Erich Grädel, and Thomas Wilke, editors, Logic and Automata: History and Perspectives [in Honor of Wolfgang Thomas], volume 2 of Texts in Logic and Games, pages 357-422. Amsterdam University Press, 2008. Google Scholar
  24. Sudipto Guha, Refael Hassin, Samir Khuller, and Einat Or. Capacitated vertex covering with applications. In Symposium on Discrete Algorithms: Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms, volume 6, pages 858-865. Citeseer, 2002. Google Scholar
  25. Jiong Guo, Rolf Niedermeier, and Sebastian Wernicke. Parameterized complexity of generalized vertex cover problems. In Workshop on Algorithms and Data Structures, pages 36-48. Springer, 2005. Google Scholar
  26. David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through a social network. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 137-146, 2003. Google Scholar
  27. Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2- ε. Journal of Computer and System Sciences, 74(3):335-349, 2008. Google Scholar
  28. Tuukka Korhonen. A single-exponential time 2-approximation algorithm for treewidth. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 184-192. IEEE, 2022. Google Scholar
  29. Michael Lampis. Parameterized approximation schemes using graph widths. In International Colloquium on Automata, Languages, and Programming, pages 775-786. Springer, 2014. Google Scholar
  30. Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. Parameterized complexity and approximability of directed odd cycle transversal. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 2181-2200. SIAM, 2020. Google Scholar
  31. Pasin Manurangsi and Prasad Raghavendra. A Birthday Repetition Theorem and Complexity of Approximating Dense CSPs. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017), volume 80 of Leibniz International Proceedings in Informatics (LIPIcs), pages 78:1-78:15, Dagstuhl, Germany, 2017. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. URL: https://doi.org/10.4230/LIPIcs.ICALP.2017.78.
  32. Venkatesh Raman, Saket Saurabh, and Sriganesh Srihari. Parameterized algorithms for generalized domination. In International Conference on Combinatorial Optimization and Applications, pages 116-126. Springer, 2008. Google Scholar
  33. Neil Robertson and Paul D. Seymour. Graph minors. ii. algorithmic aspects of tree-width. Journal of algorithms, 7(3):309-322, 1986. Google Scholar
  34. Barna Saha and Samir Khuller. Set cover revisited: Hypergraph cover with hard capacities. In International Colloquium on Automata, Languages, and Programming, pages 762-773. Springer, 2012. Google Scholar
  35. Jia-Yau Shiau, Mong-Jen Kao, Ching-Chi Lin, and DT Lee. Tight approximation for partial vertex cover with hard capacities. In 28th International Symposium on Algorithms and Computation (ISAAC 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017. Google Scholar
  36. Sam Chiu-wai Wong. Tight algorithms for vertex cover with hard capacities on multigraphs and hypergraphs. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2626-2637. SIAM, 2017. Google Scholar