Let ℱ be a family of graphs, and let p,r be nonnegative integers. For a graph G and an integer k, the (p,r,ℱ)-Covering problem asks whether there is a set D ⊆ V(G) of size at most k such that if the p-th power of G has an induced subgraph isomorphic to a graph in ℱ, then it is at distance at most r from D. The (p,r,ℱ)-Packing problem asks whether G^p has k induced subgraphs H₁,…,H_k such that each H_i is isomorphic to a graph in ℱ, and for i,j ∈ {1,…,k}, the distance between V(H_i) and V(H_j) in G is larger than r. We show that for every fixed nonnegative integers p,r and every fixed nonempty finite family ℱ of connected graphs, (p,r,ℱ)-Covering with p ≤ 2r+1 and (p,r,ℱ)-Packing with p ≤ 2⌊r/2⌋+1 admit almost linear kernels on every nowhere dense class of graphs, parameterized by the solution size k. As corollaries, we prove that Distance-r Vertex Cover, Distance-r Matching, ℱ-Free Vertex Deletion, and Induced-ℱ-Packing for any fixed finite family ℱ of connected graphs admit almost linear kernels on every nowhere dense class of graphs. Our results extend the results for Distance-r Dominating Set by Drange et al. (STACS 2016) and Eickmeyer et al. (ICALP 2017), and for Distance-r Independent Set by Pilipczuk and Siebertz (EJC 2021).
@InProceedings{ahn_et_al:LIPIcs.ISAAC.2023.5, author = {Ahn, Jungho and Kim, Jinha and Kwon, O-joung}, title = {{Unified Almost Linear Kernels for Generalized Covering and Packing Problems on Nowhere Dense Classes}}, booktitle = {34th International Symposium on Algorithms and Computation (ISAAC 2023)}, pages = {5:1--5:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-289-1}, ISSN = {1868-8969}, year = {2023}, volume = {283}, editor = {Iwata, Satoru and Kakimura, Naonori}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.5}, URN = {urn:nbn:de:0030-drops-193072}, doi = {10.4230/LIPIcs.ISAAC.2023.5}, annote = {Keywords: kernelization, independent set, dominating set, covering, packing} }
Feedback for Dagstuhl Publishing