Watrous conjectured that the randomized and quantum query complexities of symmetric functions are polynomially equivalent, which was resolved by Ambainis and Aaronson [Scott Aaronson and Andris Ambainis, 2014], and was later improved in [André Chailloux, 2019; Shalev Ben-David et al., 2020]. This paper explores a fine-grained version of the Watrous conjecture, including the randomized and quantum algorithms with success probabilities arbitrarily close to 1/2. Our contributions include the following: 1) An analysis of the optimal success probability of quantum and randomized query algorithms of two fundamental partial symmetric Boolean functions given a fixed number of queries. We prove that for any quantum algorithm computing these two functions using T queries, there exist randomized algorithms using poly(T) queries that achieve the same success probability as the quantum algorithm, even if the success probability is arbitrarily close to 1/2. These two classes of functions are instrumental in analyzing general symmetric functions. 2) We establish that for any total symmetric Boolean function f, if a quantum algorithm uses T queries to compute f with success probability 1/2+β, then there exists a randomized algorithm using O(T²) queries to compute f with success probability 1/2 + Ω(δβ²) on a 1-δ fraction of inputs, where β,δ can be arbitrarily small positive values. As a corollary, we prove a randomized version of Aaronson-Ambainis Conjecture [Scott Aaronson and Andris Ambainis, 2014] for total symmetric Boolean functions in the regime where the success probability of algorithms can be arbitrarily close to 1/2. 3) We present polynomial equivalences for several fundamental complexity measures of partial symmetric Boolean functions. Specifically, we first prove that for certain partial symmetric Boolean functions, quantum query complexity is at most quadratic in approximate degree for any error arbitrarily close to 1/2. Next, we show exact quantum query complexity is at most quadratic in degree. Additionally, we give the tight bounds of several complexity measures, indicating their polynomial equivalence. Conversely, we exhibit an exponential separation between randomized and exact quantum query complexity for certain partial symmetric Boolean functions.
@InProceedings{podder_et_al:LIPIcs.ISAAC.2023.55, author = {Podder, Supartha and Yao, Penghui and Ye, Zekun}, title = {{On the Fine-Grained Query Complexity of Symmetric Functions}}, booktitle = {34th International Symposium on Algorithms and Computation (ISAAC 2023)}, pages = {55:1--55:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-289-1}, ISSN = {1868-8969}, year = {2023}, volume = {283}, editor = {Iwata, Satoru and Kakimura, Naonori}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.55}, URN = {urn:nbn:de:0030-drops-193570}, doi = {10.4230/LIPIcs.ISAAC.2023.55}, annote = {Keywords: Query complexity, Symmetric functions, Quantum advantages} }
Feedback for Dagstuhl Publishing