LIPIcs.ITC.2021.1.pdf
- Filesize: 0.88 MB
- 23 pages
Correlated random variables are a key tool in cryptographic applications like secure multi-party computation. We investigate the power of a class of correlations that we term group correlations: A group correlation is a uniform distribution over pairs (x,y) ∈ G² such that x+y ∈ S, where G is a (possibly non-abelian) group and S is a subset of G. We also introduce bi-affine correlation{s}, and show how they relate to group correlations. We present several structural results, new protocols and applications of these correlations. The new applications include a completeness result for black box group computation, perfectly secure protocols for evaluating a broad class of black box "mixed-groups" circuits with bi-affine homomorphisms, and new information-theoretic results. Finally, we uncover a striking structure underlying OLE: In particular, we show that OLE over 𝔽_{2ⁿ}, is isomorphic to a group correlation over ℤ_4^n.
Feedback for Dagstuhl Publishing