For a fixed graph H, in the graph homomorphism problem, denoted by Hom(H), we are given a graph G and we have to determine whether there exists an edge-preserving mapping φ: V(G) → V(H). Note that Hom(C₃), where C₃ is the cycle of length 3, is equivalent to 3-Coloring. The question of whether 3-Coloring is polynomial-time solvable on diameter-2 graphs is a well-known open problem. In this paper we study the Hom(C_{2k+1}) problem on bounded-diameter graphs for k ≥ 2, so we consider all other odd cycles than C₃. We prove that for k ≥ 2, the Hom(C_{2k+1}) problem is polynomial-time solvable on diameter-(k+1) graphs - note that such a result for k = 1 would be precisely a polynomial-time algorithm for 3-Coloring of diameter-2 graphs. Furthermore, we give subexponential-time algorithms for diameter-(k+2) and -(k+3) graphs. We complement these results with a lower bound for diameter-(2k+2) graphs - in this class of graphs the Hom(C_{2k+1}) problem is NP-hard and cannot be solved in subexponential-time, unless the ETH fails. Finally, we consider another direction of generalizing 3-Coloring on diameter-2 graphs. We consider other target graphs H than odd cycles but we restrict ourselves to diameter 2. We show that if H is triangle-free, then Hom(H) is polynomial-time solvable on diameter-2 graphs.
@InProceedings{piecyk:LIPIcs.MFCS.2024.78, author = {Piecyk, Marta}, title = {{C\underline\{2k+1\}-Coloring of Bounded-Diameter Graphs}}, booktitle = {49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)}, pages = {78:1--78:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-335-5}, ISSN = {1868-8969}, year = {2024}, volume = {306}, editor = {Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.78}, URN = {urn:nbn:de:0030-drops-206348}, doi = {10.4230/LIPIcs.MFCS.2024.78}, annote = {Keywords: graph homomorphism, odd cycles, diameter} }
Feedback for Dagstuhl Publishing