LIPIcs.STACS.2025.10.pdf
- Filesize: 0.93 MB
- 20 pages
In both the category of sets and the category of compact Hausdorff spaces, there is a monotone weak distributive law that combines two layers of non-determinism. Noticing the similarity between these two laws, we study whether the latter can be obtained automatically as a weak lifting of the former. This holds partially, but does not generalize to other categories of algebras. We then characterize when exactly monotone weak distributive laws over powerset monads in categories of algebras exist, on the one hand exhibiting a law combining probabilities and non-determinism in compact Hausdorff spaces and showing on the other hand that such laws do not exist in a lot of other cases.
Feedback for Dagstuhl Publishing