Local Equivalence of Stabilizer States: A Graphical Characterisation

Authors Nathan Claudet , Simon Perdrix



PDF
Thumbnail PDF

File

LIPIcs.STACS.2025.27.pdf
  • Filesize: 0.82 MB
  • 18 pages

Document Identifiers

Author Details

Nathan Claudet
  • Inria Mocqua, LORIA, CNRS, Université de Lorraine, F-54000 Nancy, France
Simon Perdrix
  • Inria Mocqua, LORIA, CNRS, Université de Lorraine, F-54000 Nancy, France

Acknowledgements

The authors want to thank David Cattaneo and Mehdi Mhalla for fruitful discussions on previous versions of this paper.

Cite As Get BibTex

Nathan Claudet and Simon Perdrix. Local Equivalence of Stabilizer States: A Graphical Characterisation. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 27:1-27:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.STACS.2025.27

Abstract

Stabilizer states form a ubiquitous family of quantum states that can be graphically represented through the graph state formalism. A fundamental property of graph states is that applying a local complementation - a well-known and extensively studied graph transformation - results in a graph that represents the same entanglement as the original. In other words, the corresponding graph states are LU-equivalent. This property served as the cornerstone for capturing non-trivial quantum properties in a simple graphical manner, in the study of quantum entanglement but also for developing protocols and models based on graph states and stabilizer states, such as measurement-based quantum computing, secret sharing, error correction, entanglement distribution... However, local complementation fails short to fully characterise entanglement: there exist pairs of graph states that are LU-equivalent but cannot be transformed one into the other using local complementations. Only few is known about the equivalence of graph states beyond local complementation. We introduce a generalisation of local complementation which graphically characterises the LU-equivalence of graph states. We use this characterisation to show the existence of a strict infinite hierarchy of equivalences of graph states. Our approach is based on minimal local sets, which are subsets of vertices that are known to cover any graph, and to be invariant under local complementation and even LU-equivalence. We use these structures to provide a type to each vertex of a graph, leading to a natural standard form in which the LU-equivalence can be exhibited and captured by means of generalised local complementation.

Subject Classification

ACM Subject Classification
  • Theory of computation → Quantum information theory
Keywords
  • Quantum computing
  • Graph theory
  • Entanglement
  • Local complementation

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Jonas T. Anderson. On groups in the qubit clifford hierarchy. Quantum, 8:1370, 2024. URL: https://doi.org/10.22331/q-2024-06-13-1370.
  2. Koji Azuma, Sophia E. Economou, David Elkouss, Paul Hilaire, Liang Jiang, Hoi-Kwong Lo, and Ilan Tzitrin. Quantum repeaters: From quantum networks to the quantum internet. Reviews of Modern Physics, 95(4):045006, 2023. URL: https://doi.org/10.1103/RevModPhys.95.045006.
  3. Koji Azuma, Kiyoshi Tamaki, and Hoi-Kwong Lo. All-photonic quantum repeaters. Nature communications, 6(1):1-7, 2015. URL: https://doi.org/10.1038/ncomms7787.
  4. Sergey Bravyi, Yash Sharma, Mario Szegedy, and Ronald de Wolf. Generating k epr-pairs from an n-party resource state. Quantum, 8:1348, 2024. URL: https://doi.org/10.22331/q-2024-05-14-1348.
  5. Hans J. Briegel, David E. Browne, Wolfgang Dür, Robert Raussendorf, and Maarten Van den Nest. Measurement-based quantum computation. Nature Physics, 5(1):19-26, 2009. URL: https://doi.org/10.1038/nphys1157.
  6. Adán Cabello, Antonio J. López-Tarrida, Pilar Moreno, and José R. Portillo. Entanglement in eight-qubit graph states. Physics Letters A, 373(26):2219-2225, 2009. URL: https://doi.org/10.1016/j.physleta.2009.04.055.
  7. Maxime Cautrès, Nathan Claudet, Mehdi Mhalla, Simon Perdrix, Valentin Savin, and Stéphan Thomassé. Vertex-Minor Universal Graphs for Generating Entangled Quantum Subsystems. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024), volume 297 of Leibniz International Proceedings in Informatics (LIPIcs), pages 36:1-36:18, 2024. URL: https://doi.org/10.4230/LIPIcs.ICALP.2024.36.
  8. Nathan Claudet and Simon Perdrix. Covering a graph with minimal local sets. In Proceedings of the 24th workshop on Graph Theory (WG 2024), 2024. URL: https://doi.org/10.48550/arXiv.2402.10678.
  9. Nathan Claudet and Simon Perdrix. Local equivalence of stabilizer states: a graphical characterisation. (long version with proofs), 2024. URL: https://doi.org/10.48550/arXiv.2409.20183.
  10. Andrew Cross, Graeme Smith, John A. Smolin, and Bei Zeng. Codeword stabilized quantum codes. In 2008 IEEE International Symposium on Information Theory, pages 364-368. IEEE, 2008. URL: https://doi.org/10.1109/TIT.2008.2008136.
  11. Axel Dahlberg and Stephanie Wehner. Transforming graph states using single-qubit operations. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2123):20170325, 2018. URL: https://doi.org/10.1098/rsta.2017.0325.
  12. Maarten Van den Nest and Bart De Moor. Edge-local equivalence of graphs, 2005. URL: https://arxiv.org/abs/math/0510246.
  13. Maarten Van den Nest, Jeroen Dehaene, and Bart De Moor. Graphical description of the action of local clifford transformations on graph states. Physical Review A, 69(2), February 2004. URL: https://doi.org/10.1103/physreva.69.022316.
  14. Maarten Van den Nest, Jeroen Dehaene, and Bart De Moor. Local unitary versus local clifford equivalence of stabilizer states. Physical Review A, 71(6), June 2005. URL: https://doi.org/10.1103/physreva.71.062323.
  15. Matthias Englbrecht and Barbara Kraus. Symmetries and entanglement of stabilizer states. Phys. Rev. A, 101:062302, June 2020. URL: https://doi.org/10.1103/PhysRevA.101.062302.
  16. Dmitrii Germanovich Fon-Der-Flaass. Local Complementations of Simple and Directed Graphs, pages 15-34. Springer Netherlands, Dordrecht, 1996. URL: https://doi.org/10.1007/978-94-009-1606-7_3.
  17. Sylvain Gravier, Jérôme Javelle, Mehdi Mhalla, and Simon Perdrix. Quantum secret sharing with graph states. In Mathematical and Engineering Methods in Computer Science: 8th International Doctoral Workshop, MEMICS 2012, Znojmo, Czech Republic, October 25-28, 2012, Revised Selected Papers 8, pages 15-31. Springer, 2013. URL: https://doi.org/10.1007/978-3-642-36046-6_3.
  18. David Gross and Maarten Van den Nest. The LU-LC conjecture, diagonal local operations and quadratic forms over GF(2). Quantum Inf. Comput., 8(3):263-281, 2008. URL: https://doi.org/10.26421/QIC8.3-4-3.
  19. Frederik Hahn, Anna Pappa, and Jens Eisert. Quantum network routing and local complementation. npj Quantum Information, 5(1):1-7, 2019. URL: https://doi.org/10.1038/s41534-019-0191-6.
  20. Mayan Hein, Wolfgang Dür, Jens Eisert, Robert Raussendorf, Maarten Van den Nest, and Hans J. Briegel. Entanglement in graph states and its applications. Quantum computers, algorithms and chaos, 162, March 2006. URL: https://doi.org/10.3254/978-1-61499-018-5-115.
  21. Mayan Hein, Jens Eisert, and Hans J. Briegel. Multiparty entanglement in graph states. Physical Review A, 69(6), June 2004. URL: https://doi.org/10.1103/physreva.69.062311.
  22. Peter Høyer, Mehdi Mhalla, and Simon Perdrix. Resources Required for Preparing Graph States. In 17th International Symposium on Algorithms and Computation (ISAAC 2006), volume 4288 of Lecture Notes in Computer Science, pages 638-649, December 2006. URL: https://doi.org/10.1007/11940128_64.
  23. Zhengfeng Ji, Jianxin Chen, Zhaohui Wei, and Mingsheng Ying. The LU-LC conjecture is false, 2007. URL: https://arxiv.org/abs/0709.1266.
  24. Olaf Krueger and Reinhard F. Werner. Some open problems in quantum information theory, 2005. URL: https://arxiv.org/abs/quant-ph/0504166.
  25. Damian Markham and Barry C. Sanders. Graph states for quantum secret sharing. Physical Review A, 78(4):042309, 2008. URL: https://doi.org/10.1103/PhysRevA.78.042309.
  26. Clément Meignant, Damian Markham, and Frédéric Grosshans. Distributing graph states over arbitrary quantum networks. Physical Review A, 100:052333, November 2019. URL: https://doi.org/10.1103/PhysRevA.100.052333.
  27. Mehdi Mhalla and Simon Perdrix. Graph states, pivot minor, and universality of (X,Z)-measurements. Int. J. Unconv. Comput., (1-2):153-171. URL: http://www.oldcitypublishing.com/journals/ijuc-home/ijuc-issue-contents/ijuc-volume-9-number-1-2-2013/ijuc-9-1-2-p-153-171/.
  28. Eric M. Rains. Quantum codes of minimum distance two. IEEE Trans. Inf. Theory, 45(1):266-271, 1999. URL: https://doi.org/10.1109/18.746807.
  29. Robert Raussendorf and Hans J. Briegel. A one-way quantum computer. Physical review letters, 86(22):5188, 2001. URL: https://doi.org/10.1103/PhysRevLett.86.5188.
  30. Robert Raussendorf, Daniel E. Browne, and Hans J. Briegel. Measurement-based quantum computation on cluster states. Physical review A, 68(2):022312, 2003. URL: https://doi.org/10.1103/PhysRevA.68.022312.
  31. Matteo Rossi, Marcus Huber, Dagmar Bruß, and Chiara Macchiavello. Quantum hypergraph states. New Journal of Physics, 15(11):113022, 2013. URL: https://doi.org/10.1088/1367-2630/15/11/113022.
  32. Antonio Russo, Edwin Barnes, and Sophia E. Economou. Photonic graph state generation from quantum dots and color centers for quantum communications. Physical Review B, 98(8):085303, 2018. URL: https://doi.org/10.1103/PhysRevB.98.085303.
  33. Pradeep Sarvepalli and Robert Raussendorf. Local equivalence of surface code states. In Theory of Quantum Computation, Communication, and Cryptography: 5th Conference, TQC 2010, Leeds, UK, April 13-15, 2010, Revised Selected Papers 5, pages 47-62. Springer, 2011. Google Scholar
  34. Dirk Schlingemann. Stabilizer codes can be realized as graph codes, 2001. URL: https://arxiv.org/abs/quant-ph/0111080.
  35. Dirk Schlingemann and Reinhard F. Werner. Quantum error-correcting codes associated with graphs. Physical Review A, 65(1):012308, 2001. URL: https://doi.org/10.1103/PhysRevA.65.012308.
  36. Nikoloz Tsimakuridze and Otfried Gühne. Graph states and local unitary transformations beyond local clifford operations. Journal of Physics A: Mathematical and Theoretical, 50(19):195302, April 2017. URL: https://doi.org/10.1088/1751-8121/aa67cd.
  37. Ilan Tzitrin. Local equivalence of complete bipartite and repeater graph states. Physical Review A, 98(3):032305, 2018. URL: https://doi.org/10.1103/PhysRevA.98.032305.
  38. Bei Zeng, Hyeyoun Chung, Andrew W. Cross, and Isaac L. Chuang. Local unitary versus local clifford equivalence of stabilizer and graph states. Physical Review A, 75(3), March 2007. URL: https://doi.org/10.1103/physreva.75.032325.
  39. Bei Zeng, Andrew Cross, and Isaac L. Chuang. Transversality versus universality for additive quantum codes. IEEE Transactions on Information Theory, 57(9):6272-6284, 2011. URL: https://doi.org/10.1109/TIT.2011.2161917.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail