Noisy (Binary) Searching: Simple, Fast and Correct

Authors Dariusz Dereniowski , Aleksander Łukasiewicz , Przemysław Uznański



PDF
Thumbnail PDF

File

LIPIcs.STACS.2025.29.pdf
  • Filesize: 0.81 MB
  • 18 pages

Document Identifiers

Author Details

Dariusz Dereniowski
  • Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Poland
Aleksander Łukasiewicz
  • Institute of Computer Science, University of Wrocław, Poland
  • Computer Science Institute of Charles University, Prague, Czech Republic
Przemysław Uznański
  • Institute of Computer Science, University of Wrocław, Poland

Cite As Get BibTex

Dariusz Dereniowski, Aleksander Łukasiewicz, and Przemysław Uznański. Noisy (Binary) Searching: Simple, Fast and Correct. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 29:1-29:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.STACS.2025.29

Abstract

This work considers the problem of the noisy binary search in a sorted array. The noise is modeled by a parameter p that dictates that a comparison can be incorrect with probability p, independently of other queries. We state two types of upper bounds on the number of queries: the worst-case and expected query complexity scenarios. The bounds improve the ones known to date, i.e., our algorithms require fewer queries. Additionally, they have simpler statements, and work for the full range of parameters. All query complexities for the expected query scenarios are tight up to lower order terms. For the problem where the target prior is uniform over all possible inputs, we provide an algorithm with expected complexity upperbounded by (log₂ n + log₂ δ^{-1} + 3)/I(p), where n is the domain size, 0 ≤ p < 1/2 is the noise ratio, and δ > 0 is the failure probability, and I(p) is the information gain function. As a side-effect, we close some correctness issues regarding previous work. Also, en route, we obtain new and improved query complexities for the search generalized to arbitrary graphs. This paper continues and improves the lines of research of Burnashev-Zigangirov [Prob. Per. Informatsii, 1974], Ben-Or and Hassidim [FOCS 2008], Gu and Xu [STOC 2023], and Emamjomeh-Zadeh et al. [STOC 2016], Dereniowski et al. [SOSA@SODA 2019].

Subject Classification

ACM Subject Classification
  • Theory of computation → Design and analysis of algorithms
Keywords
  • Graph Algorithms
  • Noisy Binary Search
  • Query Complexity
  • Reliability

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Javed A. Aslam and Aditi Dhagat. Searching in the presence of linearly bounded errors (extended abstract). In STOC, pages 486-493, 1991. URL: https://doi.org/10.1145/103418.103469.
  2. Yosi Ben-Asher, Eitan Farchi, and Ilan Newman. Optimal search in trees. SIAM J. Comput., 28(6):2090-2102, 1999. URL: https://doi.org/10.1137/S009753979731858X.
  3. Michael Ben-Or and Avinatan Hassidim. The bayesian learner is optimal for noisy binary search (and pretty good for quantum as well). In FOCS, pages 221-230, 2008. URL: https://doi.org/10.1109/FOCS.2008.58.
  4. Elvyn R. Berlekamp. Block Coding For The Binary Symmetric Channel With Noiseless, Delayless Feedback, pages 61-88. Wiley & Sons, New York, 1968. Google Scholar
  5. Ryan S. Borgstrom and S. Rao Kosaraju. Comparison-based search in the presence of errors. In STOC, pages 130-136, 1993. URL: https://doi.org/10.1145/167088.167129.
  6. Mark Braverman, Klim Efremenko, Ran Gelles, and Bernhard Haeupler. Constant-rate coding for multiparty interactive communication is impossible. In STOC, pages 999-1010, 2016. URL: https://doi.org/10.1145/2897518.2897563.
  7. Marat Valievich Burnashev and Kamil'Shamil'evich Zigangirov. An interval estimation problem for controlled observations. Problemy Peredachi Informatsii, 10(3):51-61, 1974. Google Scholar
  8. Yuval Dagan, Yuval Filmus, Ariel Gabizon, and Shay Moran. Twenty (simple) questions. In STOC, pages 9-21, 2017. URL: https://doi.org/10.1145/3055399.3055422.
  9. Yuval Dagan, Yuval Filmus, Daniel Kane, and Shay Moran. The entropy of lies: Playing twenty questions with a liar. In James R. Lee, editor, 12th Innovations in Theoretical Computer Science Conference, ITCS 2021, volume 185 of LIPIcs, pages 1:1-1:16, 2021. URL: https://doi.org/10.4230/LIPICS.ITCS.2021.1.
  10. Christian Deppe. Coding with Feedback and Searching with Lies, pages 27-70. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007. URL: https://doi.org/10.1007/978-3-540-32777-6_2.
  11. Dariusz Dereniowski, Stefan Tiegel, Przemysław Uznański, and Daniel Wolleb-Graf. A framework for searching in graphs in the presence of errors. In SOSA@SODA, pages 4:1-4:17, 2019. URL: https://doi.org/10.4230/OASIcs.SOSA.2019.4.
  12. Aditi Dhagat, Péter Gács, and Peter Winkler. On playing "twenty questions" with a liar. In SODA, pages 16-22, 1992. URL: http://dl.acm.org/citation.cfm?id=139404.139409.
  13. Ehsan Emamjomeh-Zadeh and David Kempe. A general framework for robust interactive learning. In NIPS, pages 7085-7094, 2017. Google Scholar
  14. Ehsan Emamjomeh-Zadeh, David Kempe, and Vikrant Singhal. Deterministic and probabilistic binary search in graphs. In STOC, pages 519-532, 2016. URL: https://doi.org/10.1145/2897518.2897656.
  15. Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with noisy information. SIAM J. Comput., 23(5):1001-1018, 1994. URL: https://doi.org/10.1137/S0097539791195877.
  16. Ran Gelles, Bernhard Haeupler, Gillat Kol, Noga Ron-Zewi, and Avi Wigderson. Towards optimal deterministic coding for interactive communication. In SODA, pages 1922-1936, 2016. URL: https://doi.org/10.1137/1.9781611974331.ch135.
  17. Ran Gelles, Ankur Moitra, and Amit Sahai. Efficient coding for interactive communication. IEEE Trans. Information Theory, 60(3):1899-1913, 2014. URL: https://doi.org/10.1109/TIT.2013.2294186.
  18. Lucas Gretta and Eric Price. Sharp Noisy Binary Search with Monotonic Probabilities. In ICALP 2024. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. URL: https://doi.org/10.4230/LIPIcs.ICALP.2024.75.
  19. Yuzhou Gu and Yinzhan Xu. Optimal bounds for noisy sorting. In STOC, pages 1502-1515, 2023. URL: https://doi.org/10.1145/3564246.3585131.
  20. Bernhard Haeupler. Interactive channel capacity revisited. In FOCS, pages 226-235, 2014. URL: https://doi.org/10.1109/FOCS.2014.32.
  21. Wassily Hoeffding. Probability Inequalities for Sums of Bounded Random Variables. Journal of the American Statistical Association, 58(301):13-30, 1963. URL: https://doi.org/10.2307/2282952.
  22. Richard M. Karp and Robert Kleinberg. Noisy binary search and its applications. In SODA, pages 881-890, 2007. URL: http://dl.acm.org/citation.cfm?id=1283383.1283478.
  23. Eduardo Sany Laber, Ruy Luiz Milidiú, and Artur Alves Pessoa. On binary searching with nonuniform costs. SIAM J. Comput., 31(4):1022-1047, 2002. URL: https://doi.org/10.1137/S0097539700381991.
  24. Tak Wah Lam and Fung Ling Yue. Optimal edge ranking of trees in linear time. Algorithmica, 30(1):12-33, 2001. URL: https://doi.org/10.1007/s004530010076.
  25. Debbie Leung, Ashwin Nayak, Ala Shayeghi, Dave Touchette, Penghui Yao, and Nengkun Yu. Capacity approaching coding for low noise interactive quantum communication. In STOC, pages 339-352, 2018. URL: https://doi.org/10.1145/3188745.3188908.
  26. Krzysztof Onak and Pawel Parys. Generalization of binary search: Searching in trees and forest-like partial orders. In FOCS, pages 379-388, 2006. URL: https://doi.org/10.1109/FOCS.2006.32.
  27. Andrzej Pelc. Searching games with errors - fifty years of coping with liars. Theoretical Computer Science, 270(1):71-109, 2002. URL: https://doi.org/10.1016/S0304-3975(01)00303-6.
  28. Ronald L. Rivest, Albert R. Meyer, Daniel J. Kleitman, Karl Winklmann, and Joel Spencer. Coping with errors in binary search procedures. J. Comput. Syst. Sci., 20(3):396-404, 1980. URL: https://doi.org/10.1016/0022-0000(80)90014-8.
  29. Alfréd Rényi. On a problem of information theory. MTA Mat. Kut. Int. Kozl., 6B:505-516, 1961. Google Scholar
  30. Claude Elwood Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27:379-423, 1948. URL: https://doi.org/10.1002/J.1538-7305.1948.TB01338.X.
  31. Stanislaw M. Ulam. Adventures of a Mathematician. Scribner, New York, 1976. Google Scholar
  32. Claude Leibovici (https://math.stackexchange.com/users/82404/claude-leibovici). The taylor expansion of the binary entropy. Mathematics Stack Exchange. URL: https://math.stackexchange.com/q/4502235 (version: 2022-07-29).
  33. A. Wald. Sequential Tests of Statistical Hypotheses. The Annals of Mathematical Statistics, 16(2):117-186, 1945. URL: https://www.jstor.org/stable/2235829.
  34. Ziao Wang, Nadim Ghaddar, and Lele Wang. Noisy sorting capacity. In IEEE International Symposium on Information Theory, ISIT 2022, pages 2541-2546. IEEE, 2022. URL: https://doi.org/10.1109/ISIT50566.2022.9834370.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail