MaxMin Separation Problems: FPT Algorithms for st-Separator and Odd Cycle Transversal

Authors Ajinkya Gaikwad , Hitendra Kumar, Soumen Maity, Saket Saurabh , Roohani Sharma



PDF
Thumbnail PDF

File

LIPIcs.STACS.2025.36.pdf
  • Filesize: 0.8 MB
  • 21 pages

Document Identifiers

Author Details

Ajinkya Gaikwad
  • Indian Institute of Science Education and Research, Pune, India
Hitendra Kumar
  • Indian Institute of Science Education and Research, Pune, India
Soumen Maity
  • Indian Institute of Science Education and Research, Pune, India
Saket Saurabh
  • The Institute of Mathematical Sciences, Chennai, India
  • University of Bergen, Norway
Roohani Sharma
  • University of Bergen, Norway

Cite As Get BibTex

Ajinkya Gaikwad, Hitendra Kumar, Soumen Maity, Saket Saurabh, and Roohani Sharma. MaxMin Separation Problems: FPT Algorithms for st-Separator and Odd Cycle Transversal. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 36:1-36:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.STACS.2025.36

Abstract

In this paper, we study the parameterized complexity of the MaxMin versions of two fundamental separation problems: Maximum Minimal st-Separator and Maximum Minimal Odd Cycle Transversal (OCT), both parameterized by the solution size. In the Maximum Minimal st-Separator problem, given a graph G, two distinct vertices s and t and a positive integer k, the goal is to determine whether there exists a minimal st-separator in G of size at least k. Similarly, the Maximum Minimal OCT problem seeks to determine if there exists a minimal set of vertices whose deletion results in a bipartite graph, and whose size is at least k. We demonstrate that both problems are fixed-parameter tractable parameterized by k. Our FPT algorithm for Maximum Minimal st-Separator answers the open question by Hanaka, Bodlaender, van der Zanden & Ono [TCS 2019]. 
One unique insight from this work is the following. We use the meta-result of Lokshtanov, Ramanujan, Saurabh & Zehavi [ICALP 2018] that enables us to reduce our problems to highly unbreakable graphs. This is interesting, as an explicit use of the recursive understanding and randomized contractions framework of Chitnis, Cygan, Hajiaghayi, Pilipczuk & Pilipczuk [SICOMP 2016] to reduce to the highly unbreakable graphs setting (which is the result that Lokshtanov et al. tries to abstract out in their meta-theorem) does not seem obvious because certain "extension" variants of our problems are W[1]-hard.

Subject Classification

ACM Subject Classification
  • Theory of computation → Fixed parameter tractability
Keywords
  • Parameterized Complexity
  • FPT
  • MaxMin problems
  • Maximum Minimal st-separator
  • Maximum Minimal Odd Cycle Transversal
  • Unbreakable Graphs
  • CMSO
  • Long Induced Odd Cycles
  • Sunflower Lemma

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Hassan AbouEisha, Shahid Hussain, Vadim V. Lozin, Jérôme Monnot, Bernard Ries, and Viktor Zamaraev. Upper domination: Towards a dichotomy through boundary properties. Algorithmica, 80(10):2799-2817, 2018. URL: https://doi.org/10.1007/S00453-017-0346-9.
  2. Júlio Araújo, Marin Bougeret, Victor Campos, and Ignasi Sau. Introducing lop-kernels: A framework for kernelization lower bounds. Algorithmica, 84(11):3365-3406, November 2022. URL: https://doi.org/10.1007/s00453-022-00979-z.
  3. Júlio Araújo, Marin Bougeret, Victor A. Campos, and Ignasi Sau. Parameterized complexity of computing maximum minimal blocking and hitting sets. Algorithmica, 85(2):444-491, September 2022. URL: https://doi.org/10.1007/s00453-022-01036-5.
  4. Vineet Bafna, Piotr Berman, and Toshihiro Fujito. A 2-approximation algorithm for the undirected feedback vertex set problem. SIAM Journal on Discrete Mathematics, 12(3):289-297, 1999. URL: https://doi.org/10.1137/S0895480196305124.
  5. Cristina Bazgan, Ljiljana Brankovic, Katrin Casel, Henning Fernau, Klaus Jansen, Kim-Manuel Klein, Michael Lampis, Mathieu Liedloff, Jérôme Monnot, and Vangelis Th. Paschos. The many facets of upper domination. Theor. Comput. Sci., 717:2-25, 2018. URL: https://doi.org/10.1016/J.TCS.2017.05.042.
  6. Rémy Belmonte, Eun Jung Kim, Michael Lampis, Valia Mitsou, and Yota Otachi. Grundy distinguishes treewidth from pathwidth. SIAM J. Discret. Math., 36(3):1761-1787, 2022. URL: https://doi.org/10.1137/20M1385779.
  7. Dan Bienstock. On the complexity of testing for odd holes and induced odd paths. Discrete Mathematics, 90(1):85-92, 1991. URL: https://doi.org/10.1016/0012-365X(91)90098-M.
  8. Nicolas Boria, Federico Della Croce, and Vangelis Th. Paschos. On the max min vertex cover problem. Discrete Applied Mathematics, 196:62-71, 2015. Advances in Combinatorial Optimization. URL: https://doi.org/10.1016/j.dam.2014.06.001.
  9. Juhi Chaudhary, Sounaka Mishra, and B. S. Panda. Minimum maximal acyclic matching in proper interval graphs. In Amitabha Bagchi and Rahul Muthu, editors, Algorithms and Discrete Applied Mathematics - 9th International Conference, CALDAM 2023, Gandhinagar, India, February 9-11, 2023, Proceedings, volume 13947 of Lecture Notes in Computer Science, pages 377-388. Springer, 2023. URL: https://doi.org/10.1007/978-3-031-25211-2_29.
  10. Rajesh Chitnis, Marek Cygan, MohammadTaghi Hajiaghayi, Marcin Pilipczuk, and Michał Pilipczuk. Designing fpt algorithms for cut problems using randomized contractions. SIAM Journal on Computing, 45(4):1171-1229, 2016. URL: https://doi.org/10.1137/15M1032077.
  11. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  12. Gabriel L. Duarte, Hiroshi Eto, Tesshu Hanaka, Yasuaki Kobayashi, Yusuke Kobayashi, Daniel Lokshtanov, Lehilton L. C. Pedrosa, Rafael C. S. Schouery, and Uéverton S. Souza. Computing the largest bond and the maximum connected cut of a graph. Algorithmica, 83(5):1421-1458, 2021. URL: https://doi.org/10.1007/S00453-020-00789-1.
  13. Louis Dublois, Tesshu Hanaka, Mehdi Khosravian Ghadikolaei, Michael Lampis, and Nikolaos Melissinos. (in)approximability of maximum minimal fvs. Journal of Computer and System Sciences, 124:26-40, 2022. URL: https://doi.org/10.1016/j.jcss.2021.09.001.
  14. Louis Dublois, Michael Lampis, and Vangelis Th. Paschos. Upper dominating set: Tight algorithms for pathwidth and sub-exponential approximation. Theor. Comput. Sci., 923:271-291, 2022. URL: https://doi.org/10.1016/J.TCS.2022.05.013.
  15. Paul Erdös and Richard Rado. Intersection theorems for systems of sets. Journal of the London Mathematical Society, 1(1):85-90, 1960. Google Scholar
  16. Fabio Furini, Ivana Ljubić, and Markus Sinnl. An effective dynamic programming algorithm for the minimum-cost maximal knapsack packing problem. European Journal of Operational Research, 262(2):438-448, 2017. URL: https://doi.org/10.1016/j.ejor.2017.03.061.
  17. Ajinkya Gaikwad and Soumen Maity. Parameterized complexity of upper edge domination. CoRR, abs/2208.02522, 2022. URL: https://doi.org/10.48550/arXiv.2208.02522.
  18. Laurent Gourvès, Jérôme Monnot, and Aris T. Pagourtzis. The lazy bureaucrat problem with common arrivals and deadlines: Approximation and mechanism design. In Leszek Gąsieniec and Frank Wolter, editors, Fundamentals of Computation Theory, pages 171-182, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. URL: https://doi.org/10.1007/978-3-642-40164-0_18.
  19. Robert Haas and Michael Hoffmann. Chordless paths through three vertices. Theoretical Computer Science, 351(3):360-371, 2006. Parameterized and Exact Computation. URL: https://doi.org/10.1016/j.tcs.2005.10.021.
  20. Tesshu Hanaka, Hans L. Bodlaender, Tom C. van der Zanden, and Hirotaka Ono. On the maximum weight minimal separator. Theoretical Computer Science, 796:294-308, 2019. URL: https://doi.org/10.1016/j.tcs.2019.09.025.
  21. Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2-epsilon. J. Comput. Syst. Sci., 74(3):335-349, 2008. URL: https://doi.org/10.1016/J.JCSS.2007.06.019.
  22. Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. Flow-augmentation ii: Undirected graphs. ACM Trans. Algorithms, 20(2), March 2024. URL: https://doi.org/10.1145/3641105.
  23. Michael Lampis. Minimum stable cut and treewidth. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 92:1-92:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPICS.ICALP.2021.92.
  24. Michael Lampis, Nikolaos Melissinos, and Manolis Vasilakis. Parameterized Max Min Feedback Vertex Set. In Jérôme Leroux, Sylvain Lombardy, and David Peleg, editors, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023), volume 272 of Leibniz International Proceedings in Informatics (LIPIcs), pages 62:1-62:15, Dagstuhl, Germany, 2023. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.MFCS.2023.62.
  25. Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Roohani Sharma, and Meirav Zehavi. Covering small independent sets and separators with applications to parameterized algorithms. ACM Trans. Algorithms, 16(3):32:1-32:31, 2020. URL: https://doi.org/10.1145/3379698.
  26. Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. Reducing CMSO model checking to highly connected graphs. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors, 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs, pages 135:1-135:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPICS.ICALP.2018.135.
  27. Dáaniel Marx, Barry O’sullivan, and Igor Razgon. Finding small separators in linear time via treewidth reduction. ACM Trans. Algorithms, 9(4), October 2013. URL: https://doi.org/10.1145/2500119.
  28. Jérôme Monnot, Henning Fernau, and David F. Manlove. Algorithmic aspects of upper edge domination. Theor. Comput. Sci., 877:46-57, 2021. URL: https://doi.org/10.1016/J.TCS.2021.03.038.
  29. Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Oper. Res. Lett., 32(4):299-301, 2004. URL: https://doi.org/10.1016/J.ORL.2003.10.009.
  30. Meirav Zehavi. Maximum minimal vertex cover parameterized by vertex cover. SIAM Journal on Discrete Mathematics, 31(4):2440-2456, 2017. URL: https://doi.org/10.1137/16M109017X.
  31. Édouard Bonnet, Michael Lampis, and Vangelis Th. Paschos. Time-approximation trade-offs for inapproximable problems. Journal of Computer and System Sciences, 92:171-180, 2018. URL: https://doi.org/10.1016/j.jcss.2017.09.009.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail