Independence and Domination on Bounded-Treewidth Graphs: Integer, Rational, and Irrational Distances

Authors Tim A. Hartmann , Dániel Marx



PDF
Thumbnail PDF

File

LIPIcs.STACS.2025.44.pdf
  • Filesize: 0.87 MB
  • 19 pages

Document Identifiers

Author Details

Tim A. Hartmann
  • CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
Dániel Marx
  • CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Cite As Get BibTex

Tim A. Hartmann and Dániel Marx. Independence and Domination on Bounded-Treewidth Graphs: Integer, Rational, and Irrational Distances. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 44:1-44:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.STACS.2025.44

Abstract

The distance-d variants of Independent Set and Dominating Set problems have been extensively studied from different algorithmic viewpoints. In particular, the complexity of these problems are well understood on bounded-treewidth graphs [Katsikarelis, Lampis, and Paschos, Discret. Appl. Math 2022][Borradaile and Le, IPEC 2016]: given a tree decomposition of width t, the two problems can be solved in time d^t⋅ n^O(1) and (2d+1)^t⋅ n^O(1), respectively. Furthermore, assuming the Strong Exponential-Time Hypothesis (SETH), the base constants are best possible in these running times: they cannot be improved to d-ε and 2d+1-ε, respectively, for any ε > 0. We investigate continuous versions of these problems in a setting introduced by Megiddo and Tamir [SICOMP 1983], where every edge is modeled by a unit-length interval of points. In the δ-Dispersion problem, the task is to find a maximum number of points (possibly inside edges) that are pairwise at distance at least δ from each other. Similarly, in the δ-Covering problem, the task is to find a minimum number of points (possibly inside edges) such that every point of the graph (including those inside edges) is at distance at most δ from the selected point set. We provide a comprehensive understanding of these two problems on bounded-treewidth graphs.  
1) Let δ = a/b with a and b being coprime. If a ≤ 2, then δ-Dispersion is polynomial-time solvable. For a ≥ 3, given a tree decomposition of width t, the problem can be solved in time (2a)^t⋅ n^O(1), and, assuming SETH, there is no (2a-ε)^t⋅n^{O(1)} time algorithm for any ε > 0. 
2) Let δ = a/b with a and b being coprime. If a = 1, then δ-Covering is polynomial-time solvable. For a ≥ 2, given a tree decomposition of width t, the problem can be solved in time ((2+2(bod 2)) a)^t⋅ n^O(1), and, assuming SETH, there is no ((2+2(bod 2))a -ε)^t⋅n^O(1) time algorithm for any ε > 0. 
3) For every fixed irrational number δ > 0 satisfying some mild computability condition, both δ-Dispersion and δ-Covering can be solved in time n^O(t) on graphs of treewidth t. We show a very explicitly defined irrational number δ = (4∑_{j=1}^∞ 2^{-2^j})^{-1} ≈ 0.790085 such that δ-Dispersion and δ/2-Covering are W[1]-hard parameterized by the treewidth t of the input graph, and, assuming ETH, cannot be solved in time f(t)⋅n^o(t). 
As a key step in obtaining these results, we extend earlier results on distance-d versions of Independent Set and Dominating Set: We determine the exact complexity of these problems in the special case when the input graph arises from some graph G' by subdividing every edge exactly b times.

Subject Classification

ACM Subject Classification
  • Theory of computation → Discrete optimization
  • Mathematics of computing → Graph algorithms
  • Theory of computation → Problems, reductions and completeness
  • Theory of computation → Parameterized complexity and exact algorithms
Keywords
  • Independence
  • Domination
  • Irrationals
  • Treewidth
  • SETH

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Yousef Alavi, M. Behzad, Linda M. Lesniak-Foster, and E. A. Nordhaus. Total matchings and total coverings of graphs. Journal of Graph Theory, 1(2):135-140, 1977. URL: https://doi.org/10.1002/jgt.3190010209.
  2. Yousef Alavi, Jiuqiang Liu, Jianfang Wang, and Zhongfu Zhang. On total covers of graphs. Discret. Math., 100(1-3):229-233, 1992. URL: https://doi.org/10.1016/0012-365X(92)90643-T.
  3. José D. Alvarado, Simone Dantas, and Dieter Rautenbach. Distance k-domination, distance k-guarding, and distance k-vertex cover of maximal outerplanar graphs. Discret. Appl. Math., 194:154-159, 2015. URL: https://doi.org/10.1016/J.DAM.2015.05.010.
  4. Gábor Bacsó, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Zsolt Tuza, and Erik Jan Van Leeuwen. Subexponential-time algorithms for maximum independent set in P_t-free and broom-free graphs. Algorithmica, 81:421-438, 2019. Google Scholar
  5. Glencora Borradaile and Hung Le. Optimal dynamic program for r-domination problems over tree decompositions. In Jiong Guo and Danny Hermelin, editors, 11th International Symposium on Parameterized and Exact Computation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark, volume 63 of LIPIcs, pages 8:1-8:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPIcs.IPEC.2016.8.
  6. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  7. Clément Dallard, Mirza Krbezlija, and Martin Milanic. Vertex cover at distance on H-free graphs. In Paola Flocchini and Lucia Moura, editors, Combinatorial Algorithms - 32nd International Workshop, IWOCA 2021, Ottawa, ON, Canada, July 5-7, 2021, Proceedings, volume 12757 of Lecture Notes in Computer Science, pages 237-251. Springer, 2021. URL: https://doi.org/10.1007/978-3-030-79987-8_17.
  8. Perino M. Dearing and Richard L. Francis. A minimax location problem on a network. Transportation Science, 8(4):333-343, 1974. Google Scholar
  9. Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness II: on completeness for W[1]. Theor. Comput. Sci., 141(1&2):109-131, 1995. URL: https://doi.org/10.1016/0304-3975(94)00097-3.
  10. Louis Dublois, Michael Lampis, and Vangelis T. Paschos. New algorithms for mixed dominating set. Discret. Math. Theor. Comput. Sci., 23(1), 2021. URL: https://doi.org/10.46298/DMTCS.6824.
  11. Paul Erdős and Amram Meir. On total matching numbers and total covering numbers of complementary graphs. Discret. Math., 19(3):229-233, 1977. URL: https://doi.org/10.1016/0012-365X(77)90102-9.
  12. Hiroshi Eto, Fengrui Guo, and Eiji Miyano. Distance-d independent set problems for bipartite and chordal graphs. J. Comb. Optim., 27(1):88-99, 2014. URL: https://doi.org/10.1007/s10878-012-9594-4.
  13. Hiroshi Eto, Takehiro Ito, Zhilong Liu, and Eiji Miyano. Approximation algorithm for the distance-3 independent set problem on cubic graphs. In Sheung-Hung Poon, Md. Saidur Rahman, and Hsu-Chun Yen, editors, WALCOM: Algorithms and Computation, 11th International Conference and Workshops, WALCOM 2017, Hsinchu, Taiwan, March 29-31, 2017, Proceedings, volume 10167 of Lecture Notes in Computer Science, pages 228-240. Springer, 2017. URL: https://doi.org/10.1007/978-3-319-53925-6_18.
  14. Alexander Grigoriev, Tim A. Hartmann, Stefan Lendl, and Gerhard J. Woeginger. Dispersing obnoxious facilities on a graph. Algorithmica, 83(6):1734-1749, 2021. URL: https://doi.org/10.1007/s00453-021-00800-3.
  15. Tim A. Hartmann. Facility location on graphs. Dissertation, RWTH Aachen University, Aachen, 2022. URL: https://doi.org/10.18154/RWTH-2023-01837.
  16. Tim A. Hartmann and Tom Janßen. Approximating δ-covering (to appear). In Approximation and Online Algorithms - 22nd International Workshop, WAOA 2024, Egham, United Kingdom, September 5-6, 2024, Proceedings, Lecture Notes in Computer Science. Springer, 2024. Google Scholar
  17. Tim A. Hartmann and Stefan Lendl. Dispersing obnoxious facilities on graphs by rounding distances. In Stefan Szeider, Robert Ganian, and Alexandra Silva, editors, 47th International Symposium on Mathematical Foundations of Computer Science, MFCS 2022, August 22-26, 2022, Vienna, Austria, volume 241 of LIPIcs, pages 55:1-55:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPICS.MFCS.2022.55.
  18. Tim A. Hartmann, Stefan Lendl, and Gerhard J. Woeginger. Continuous facility location on graphs. Math. Program., 192(1):207-227, 2022. URL: https://doi.org/10.1007/s10107-021-01646-x.
  19. Pallavi Jain, Jayakrishnan Madathil, Fahad Panolan, and Abhishek Sahu. Mixed dominating set: A parameterized perspective. In Hans L. Bodlaender and Gerhard J. Woeginger, editors, Graph-Theoretic Concepts in Computer Science - 43rd International Workshop, WG 2017, Eindhoven, The Netherlands, June 21-23, 2017, Revised Selected Papers, volume 10520 of Lecture Notes in Computer Science, pages 330-343. Springer, 2017. URL: https://doi.org/10.1007/978-3-319-68705-6_25.
  20. Ioannis Katsikarelis, Michael Lampis, and Vangelis T. Paschos. Structurally parameterized d-scattered set. Discret. Appl. Math., 308:168-186, 2022. URL: https://doi.org/10.1016/j.dam.2020.03.052.
  21. Ioannis Katsikarelis, Michael Lampis, and Vangelis T. Paschos. Improved (in-)approximability bounds for d-scattered set. J. Graph Algorithms Appl., 27(3):219-238, 2023. URL: https://doi.org/10.7155/JGAA.00621.
  22. Michael Lampis. The primal pathwidth SETH. CoRR, abs/2403.07239, 2024. URL: https://doi.org/10.48550/arXiv.2403.07239.
  23. Jason Lewis, Stephen T. Hedetniemi, Teresa W. Haynes, and Gerd H. Fricke. Vertex-edge domination. Utilitas mathematica, 81:193-213, 2010. Google Scholar
  24. Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs of bounded treewidth are probably optimal. ACM Trans. Algorithms, 14(2):13:1-13:30, 2018. URL: https://doi.org/10.1145/3170442.
  25. Jayakrishnan Madathil, Fahad Panolan, Abhishek Sahu, and Saket Saurabh. On the complexity of mixed dominating set. In René van Bevern and Gregory Kucherov, editors, Computer Science - Theory and Applications - 14th International Computer Science Symposium in Russia, CSR 2019, Novosibirsk, Russia, July 1-5, 2019, Proceedings, volume 11532 of Lecture Notes in Computer Science, pages 262-274. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-19955-5_23.
  26. Aniket Majumdar. Neighborhood hypergraphs: A framework for covering and packing parameters in graphs. Dissertation, Clemson University, 1992. Google Scholar
  27. Nimrod Megiddo and Arie Tamir. New results on the complexity of p-center problems. SIAM J. Comput., 12(4):751-758, 1983. URL: https://doi.org/10.1137/0212051.
  28. Amram Meir. On total covering and matching of graphs. J. Comb. Theory B, 24(2):164-168, 1978. URL: https://doi.org/10.1016/0095-8956(78)90017-5.
  29. Pedro Montealegre and Ioan Todinca. On distance-d independent set and other problems in graphs with "few" minimal separators. In Pinar Heggernes, editor, Graph-Theoretic Concepts in Computer Science - 42nd International Workshop, WG 2016, Istanbul, Turkey, June 22-24, 2016, Revised Selected Papers, volume 9941 of Lecture Notes in Computer Science, pages 183-194, 2016. URL: https://doi.org/10.1007/978-3-662-53536-3_16.
  30. Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006. URL: https://doi.org/10.1093/ACPROF:OSO/9780198566076.001.0001.
  31. Uri N. Peled and Feng Sun. Total matchings and total coverings of threshold graphs. Discret. Appl. Math., 49(1-3):325-330, 1994. URL: https://doi.org/10.1016/0166-218X(94)90216-X.
  32. Michal Pilipczuk and Sebastian Siebertz. Kernelization and approximation of distance-r independent sets on nowhere dense graphs. Eur. J. Comb., 94:103309, 2021. URL: https://doi.org/10.1016/J.EJC.2021.103309.
  33. Douglas R. Shier. A min-max theorem for p-center problems on a tree. Transportation Science, 11(3):243-252, 1977. URL: http://www.jstor.org/stable/25767877.
  34. Arie Tamir. On the solution value of the continuous p-center location problem on a graph. Math. Oper. Res., 12(2):340-349, 1987. URL: https://doi.org/10.1287/moor.12.2.340.
  35. Arie Tamir. Obnoxious facility location on graphs. SIAM J. Discret. Math., 4(4):550-567, 1991. URL: https://doi.org/10.1137/0404048.
  36. Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. Dynamic programming on tree decompositions using generalised fast subset convolution. In Amos Fiat and Peter Sanders, editors, Algorithms - ESA 2009, 17th Annual European Symposium, Copenhagen, Denmark, September 7-9, 2009. Proceedings, volume 5757 of Lecture Notes in Computer Science, pages 566-577. Springer, 2009. URL: https://doi.org/10.1007/978-3-642-04128-0_51.
  37. Mingyu Xiao and Zimo Sheng. Improved parameterized algorithms and kernels for mixed domination. Theor. Comput. Sci., 815:109-120, 2020. URL: https://doi.org/10.1016/J.TCS.2020.02.014.
  38. Yancai Zhao, Liying Kang, and Moo Young Sohn. The algorithmic complexity of mixed domination in graphs. Theor. Comput. Sci., 412(22):2387-2392, 2011. URL: https://doi.org/10.1016/J.TCS.2011.01.029.
  39. Radosław Ziemann and Paweł Żyliński. Vertex-edge domination in cubic graphs. Discret. Math., 343(11):112075, 2020. URL: https://doi.org/10.1016/J.DISC.2020.112075.
  40. Paweł Żyliński. Vertex-edge domination in graphs. Aequationes mathematicae, 93(4):735-742, 2019. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail