Polynomial Kernel and Incompressibility for Prison-Free Edge Deletion and Completion

Authors Séhane Bel Houari-Durand , Eduard Eiben , Magnus Wahlström



PDF
Thumbnail PDF

File

LIPIcs.STACS.2025.52.pdf
  • Filesize: 0.78 MB
  • 17 pages

Document Identifiers

Author Details

Séhane Bel Houari-Durand
  • ENS Lyon, France
Eduard Eiben
  • Department of Computer Science, Royal Holloway University of London, UK
Magnus Wahlström
  • Department of Computer Science, Royal Holloway University of London, UK

Cite As Get BibTex

Séhane Bel Houari-Durand, Eduard Eiben, and Magnus Wahlström. Polynomial Kernel and Incompressibility for Prison-Free Edge Deletion and Completion. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 52:1-52:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.STACS.2025.52

Abstract

Given a graph G and an integer k, the H-free Edge Deletion problem asks whether there exists a set of at most k edges of G whose deletion makes G free of induced copies of H. Significant attention has been given to the kernelizability aspects of this problem - i.e., for which graphs H does the problem admit an "efficient preprocessing" procedure, known as a polynomial kernelization, where an instance I of the problem with parameter k is reduced to an equivalent instance I' whose size and parameter value are bounded polynomially in k? Although such routines are known for many graphs H where the class of H-free graphs has significant restricted structure, it is also clear that for most graphs H the problem is incompressible, i.e., admits no polynomial kernelization parameterized by k unless the polynomial hierarchy collapses. These results led Marx and Sandeep to the conjecture that H-free Edge Deletion is incompressible for any graph H with at least five vertices, unless H is complete or has at most one edge (JCSS 2022). This conjecture was reduced to the incompressibility of H-free Edge Deletion for a finite list of graphs H. We consider one of these graphs, which we dub the prison, and show that Prison-Free Edge Deletion has a polynomial kernel, refuting the conjecture. On the other hand, the same problem for the complement of the prison is incompressible.

Subject Classification

ACM Subject Classification
  • Theory of computation → Parameterized complexity and exact algorithms
Keywords
  • Graph modification problems
  • parameterized complexity
  • polynomial kernelization

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower bounds by cross-composition. SIAM J. Discret. Math., 28(1):277-305, 2014. URL: https://doi.org/10.1137/120880240.
  2. Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett., 58(4):171-176, 1996. URL: https://doi.org/10.1016/0020-0190(96)00050-6.
  3. Leizhen Cai and Yufei Cai. Incompressibility of H-free edge modification problems. Algorithmica, 71(3):731-757, 2015. URL: https://doi.org/10.1007/S00453-014-9937-X.
  4. Yixin Cao, Ashutosh Rai, R. B. Sandeep, and Junjie Ye. A polynomial kernel for diamond-free editing. Algorithmica, 84(1):197-215, 2022. URL: https://doi.org/10.1007/S00453-021-00891-Y.
  5. Christophe Crespelle, Pål Grønås Drange, Fedor V. Fomin, and Petr A. Golovach. A survey of parameterized algorithms and the complexity of edge modification. Comput. Sci. Rev., 48:100556, 2023. URL: https://doi.org/10.1016/J.COSREV.2023.100556.
  6. Eduard Eiben and William Lochet. A polynomial kernel for line graph deletion. In Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders, editors, 28th Annual European Symposium on Algorithms, ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages 42:1-42:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPICS.ESA.2020.42.
  7. Eduard Eiben, William Lochet, and Saket Saurabh. A polynomial kernel for paw-free editing. In IPEC, volume 180 of LIPIcs, pages 10:1-10:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPICS.IPEC.2020.10.
  8. Paul Erdös and Richard Rado. Intersection theorems for systems of sets. Journal of the London Mathematical Society, 1(1):85-90, 1960. Google Scholar
  9. Michael R. Fellows, Michael A. Langston, Frances A. Rosamond, and Peter Shaw. Efficient parameterized preprocessing for cluster editing. In Erzsébet Csuhaj-Varjú and Zoltán Ésik, editors, Fundamentals of Computation Theory, 16th International Symposium, FCT 2007, Budapest, Hungary, August 27-30, 2007, Proceedings, volume 4639 of Lecture Notes in Computer Science, pages 312-321. Springer, 2007. URL: https://doi.org/10.1007/978-3-540-74240-1_27.
  10. Jörg Flum and Martin Grohe. Parameterized Complexity Theory, volume XIV of Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin, 2006. URL: https://doi.org/10.1007/3-540-29953-X.
  11. Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: Theory of Parameterized Preprocessing. Cambridge University Press, 2019. URL: https://doi.org/10.1017/9781107415157.
  12. Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Graph-modeled data clustering: Exact algorithms for clique generation. Theory Comput. Syst., 38(4):373-392, 2005. URL: https://doi.org/10.1007/S00224-004-1178-Y.
  13. Sylvain Guillemot, Frédéric Havet, Christophe Paul, and Anthony Perez. On the (non-)existence of polynomial kernels for P_l-free edge modification problems. Algorithmica, 65(4):900-926, 2013. URL: https://doi.org/10.1007/S00453-012-9619-5.
  14. Stefan Kratsch and Magnus Wahlström. Two edge modification problems without polynomial kernels. Discret. Optim., 10(3):193-199, 2013. URL: https://doi.org/10.1016/J.DISOPT.2013.02.001.
  15. Dániel Marx and R. B. Sandeep. Incompressibility of H-free edge modification problems: Towards a dichotomy. J. Comput. Syst. Sci., 125:25-58, 2022. URL: https://doi.org/10.1016/J.JCSS.2021.11.001.
  16. Stephan Olariu. Paw-fee graphs. Inf. Process. Lett., 28(1):53-54, 1988. URL: https://doi.org/10.1016/0020-0190(88)90143-3.
  17. W. D. Wallis and G. H. Zhang. On maximal clique irreducible graphs. J. Comb. Math. Comb. Comput, 8:187-198, 1990. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail