LIPIcs.SWAT.2024.12.pdf
- Filesize: 0.72 MB
- 15 pages
The problem of edge coloring has been extensively studied over the years. Recently, this problem has received significant attention in the dynamic setting, where we are given a dynamic graph evolving via a sequence of edge insertions and deletions and our objective is to maintain an edge coloring of the graph. Currently, it is not known whether it is possible to maintain a (Δ + O(Δ^(1-μ)))-edge coloring in Õ(1) update time, for any constant μ > 0, where Δ is the maximum degree of the graph. In this paper, we show how to efficiently maintain a (Δ + O(α))-edge coloring in Õ(1) amortized update time, where α is the arboricty of the graph. Thus, we answer this question in the affirmative for graphs of sufficiently small arboricity.
Feedback for Dagstuhl Publishing