LIPIcs.SWAT.2024.37.pdf
- Filesize: 0.72 MB
- 17 pages
Given a spanning tree T of a planar graph G, the co-tree of T is the spanning tree of the dual graph G^* with edge set (E(G)-E(T))^*. Grünbaum conjectured in 1970 that every planar 3-connected graph G contains a spanning tree T such that both T and its co-tree have maximum degree at most 3. While Grünbaum’s conjecture remains open, Biedl proved that there is a spanning tree T such that T and its co-tree have maximum degree at most 5. By using new structural insights into Schnyder woods, we prove that there is a spanning tree T such that T and its co-tree have maximum degree at most 4. This tree can be computed in linear time.
Feedback for Dagstuhl Publishing