Toward Grünbaum’s Conjecture

Authors Christian Ortlieb, Jens M. Schmidt



PDF
Thumbnail PDF

File

LIPIcs.SWAT.2024.37.pdf
  • Filesize: 0.72 MB
  • 17 pages

Document Identifiers

Author Details

Christian Ortlieb
  • Institute of Computer Science, University of Rostock, Germany
Jens M. Schmidt
  • Institute of Computer Science, University of Rostock, Germany

Cite AsGet BibTex

Christian Ortlieb and Jens M. Schmidt. Toward Grünbaum’s Conjecture. In 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 294, pp. 37:1-37:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SWAT.2024.37

Abstract

Given a spanning tree T of a planar graph G, the co-tree of T is the spanning tree of the dual graph G^* with edge set (E(G)-E(T))^*. Grünbaum conjectured in 1970 that every planar 3-connected graph G contains a spanning tree T such that both T and its co-tree have maximum degree at most 3. While Grünbaum’s conjecture remains open, Biedl proved that there is a spanning tree T such that T and its co-tree have maximum degree at most 5. By using new structural insights into Schnyder woods, we prove that there is a spanning tree T such that T and its co-tree have maximum degree at most 4. This tree can be computed in linear time.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph theory
Keywords
  • Planar graph
  • spanning tree
  • maximum degree
  • Schnyder wood

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Md. J. Alam, W. Evans, S. G. Kobourov, S. Pupyrev, J. Toeniskoetter, and T. Ueckerdt. Contact representations of graphs in 3D. In Proceedings of the 14th International Symposium on Algorithms and Data Structures (WADS '15), volume 9214 of Lecture Notes in Computer Science, pages 14-27, 2015. Technical Report accessible on arXiv: https://arxiv.org/abs/1501.00304. URL: https://doi.org/10.1007/978-3-319-21840-3_2.
  2. M. Badent, U. Brandes, and S. Cornelsen. More canonical ordering. Journal of Graph Algorithms and Applications, 15(1):97-126, 2011. URL: https://doi.org/10.7155/JGAA.00219.
  3. D. Barnette. Trees in polyhedral graphs. Canadian Journal of Mathematics, 18:731-736, 1966. URL: https://doi.org/10.4153/CJM-1966-073-4.
  4. D. W. Barnette. 2-Connected spanning subgraphs of planar 3-connected graphs. Journal of Combinatorial Theory, Series B, 61:210-216, 1994. URL: https://doi.org/10.1006/jctb.1994.1045.
  5. T. Biedl. Trees and co-trees with bounded degrees in planar 3-connected graphs. In 14th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT'14), pages 62-73, 2014. URL: https://doi.org/10.1007/978-3-319-08404-6_6.
  6. T. Böhme, J. Harant, M. Kriesell, S. Mohr, and J. M. Schmidt. Rooted minors and locally spanning subgraphs. Journal of Graph Theory, 105(2):209-229, 2024. URL: https://doi.org/10.1002/jgt.23012.
  7. R. Brunet, M. N. Ellingham, Z. Gao, A. Metzlar, and R. B. Richter. Spanning planar subgraphs of graphs in the torus and Klein bottle. Journal of Combinatorial Theory, Series B, 65(1):7-22, 1995. URL: https://doi.org/10.1006/jctb.1995.1041.
  8. P. O. de Mendez. Orientations bipolaires. PhD thesis, École des Hautes Études en Sciences Sociales, Paris, 1994. Google Scholar
  9. G. Di Battista, R. Tamassia, and L. Vismara. Output-sensitive reporting of disjoint paths. Algorithmica, 23(4):302-340, 1999. URL: https://doi.org/10.1007/PL00009264.
  10. R. Diestel. Graph theory. Graduate texts in mathematics 173. Springer, Berlin, 4th edition edition, 2012. URL: http://swbplus.bsz-bw.de/bsz377230375cov.htm.
  11. S. Felsner. Geodesic embeddings and planar graphs. Order, 20:135-150, 2003. Google Scholar
  12. S. Felsner. Geometric Graphs and Arrangements. Advanced Lectures in Mathematics. Vieweg+Teubner, Wiesbaden, 2004. URL: https://doi.org/10.1007/978-3-322-80303-0.
  13. S. Felsner. Lattice structures from planar graphs. Electronic Journal of Combinatorics, 11(1):R15, 1-24, 2004. URL: https://doi.org/10.37236/1768.
  14. Stefan Felsner. Convex drawings of planar graphs and the order dimension of 3-polytopes. Order, 18(1):19-37, 2001. URL: https://doi.org/10.1023/A:1010604726900.
  15. É. Fusy. Combinatorics of planar maps and algorithmic applications (Combinatoire des cartes planaires et applications algorithmiques). PhD thesis, École Polytechnique, Palaiseau, France, 2007. URL: https://tel.archives-ouvertes.fr/pastel-00002931.
  16. H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of disjoint set union. Journal of Computer and System Sciences, 30(2):209-221, 1985. Google Scholar
  17. Z. Gao. 2-Connected coverings of bounded degree in 3-connected graphs. Journal of Graph Theory, 20(3):327-338, 1995. URL: https://doi.org/10.1002/JGT.3190200309.
  18. Z. Gao and R. B. Richter. 2-Walks in circuit graphs. Journal of Combinatorial Theory, Series B, 62(2):259-267, 1994. URL: https://doi.org/10.1006/JCTB.1994.1068.
  19. B. Grünbaum. Polytopes, graphs, and complexes. Bulletin of the American Mathematical Society, 76(6):1131-1201, 1970. URL: https://doi.org/10.1090/S0002-9904-1970-12601-5.
  20. G. Kant. Drawing planar graphs using the lmc-ordering. In Proceedings of the 33rd Annual Symposium on Foundations of Computer Science (FOCS'92), pages 101-110, 1992. URL: https://doi.org/10.1109/SFCS.1992.267814.
  21. G. Kant. Drawing planar graphs using the canonical ordering. Algorithmica, 16(1):4-32, 1996. URL: https://doi.org/10.1007/BF02086606.
  22. K. Ota and K. Ozeki. Spanning trees in 3-connected K_3,t-minor-free graphs. Journal of Combinatorial Theory, Series B, 102:1179-1188, 2012. URL: https://doi.org/10.1016/J.JCTB.2012.07.002.
  23. K. Ozeki and T. Yamashita. Spanning trees: A survey. Graphs and Combinatorics, 27:1-26, 2011. URL: https://doi.org/10.1007/S00373-010-0973-2.
  24. W. Schnyder. Embedding planar graphs on the grid. In Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms, pages 138-148, 1990. URL: http://dl.acm.org/citation.cfm?id=320176.320191.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail