Recognition and Proper Coloring of Unit Segment Intersection Graphs

Authors Robert D. Barish , Tetsuo Shibuya



PDF
Thumbnail PDF

File

LIPIcs.SWAT.2024.5.pdf
  • Filesize: 0.91 MB
  • 19 pages

Document Identifiers

Author Details

Robert D. Barish
  • Division of Medical Data Informatics, Human Genome Center, Institute of Medical Science, University of Tokyo, Japan
Tetsuo Shibuya
  • Division of Medical Data Informatics, Human Genome Center, Institute of Medical Science, University of Tokyo, Japan

Cite AsGet BibTex

Robert D. Barish and Tetsuo Shibuya. Recognition and Proper Coloring of Unit Segment Intersection Graphs. In 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 294, pp. 5:1-5:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SWAT.2024.5

Abstract

In this work, we concern ourselves with the fine-grained complexity of recognition and proper coloring problems on highly restricted classes of geometric intersection graphs of "thin" objects (i.e., objects with unbounded aspect ratios). As a point of motivation, we remark that there has been significant interest in finding algorithmic lower bounds for classic decision and optimization problems on these types of graphs, as they appear to escape the net of known planar or geometric separator theorems for "fat" objects (i.e., objects with bounded aspect ratios). In particular, letting n be the order of a geometric intersection graph, and assuming a geometric ply bound, per what is known as the "square root phenomenon", these separator theorems often imply the existence of 𝒪(2^√n) algorithms for problems ranging from finding proper colorings to finding Hamiltonian cycles. However, in contrast, it is known for instance that no 2^o(n) time algorithm can exist under the Exponential Time Hypothesis (ETH) for proper 6-coloring intersection graphs of line segments embedded in the plane (Biró et. al.; J. Comput. Geom. 9(2); pp. 47-80; 2018). We begin by establishing algorithmic lower bounds for proper k-coloring and recognition problems of intersection graphs of line segments embedded in the plane under the most stringent constraints possible that allow either problem to be non-trivial. In particular, we consider the class UNIT-PURE-k-DIR of unit segment geometric intersection graphs, in which segments are constrained to lie in at most k directions in the plane, and no two parallel segments are permitted to intersect. Here, under the ETH, we show for every k ≥ 3 that no 2^o(√{n/k}) time algorithm can exist for either recognizing or proper k-coloring UNIT-PURE-k-DIR graphs of order n. In addition, for every k ≥ 4, we establish the same algorithmic lower bound under the ETH for the problem of proper (k-1)-coloring UNIT-PURE-k-DIR graphs when provided a list of segment coordinates specified using 𝒪(n ⋅ k) bits witnessing graph class membership. As a consequence of our approach, we are also able to show that the problem of properly 3-coloring an arbitrary graph on m edges can be reduced in 𝒪(m²) time to the problem of properly (k-1)-coloring a UNIT-PURE-k-DIR graph. Finally, we consider a slightly less constrained class of geometric intersection graphs of lines (of unbounded length) in which line-line intersections must occur on any one of (r = 3) parallel planes in ℝ³. In this context, for every k ≥ 3, we show that no 2^o(n/k) time algorithm can exist for proper k-coloring these graphs unless the ETH is false.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph theory
  • Mathematics of computing → Graph coloring
Keywords
  • graph class recognition
  • proper coloring
  • geometric intersection graph
  • segment intersection graph
  • fine-grained complexity
  • Exponential Time Hypothesis

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. K. I. Aardal, S. P. M. van Hoesel, A. M. C. A. Koster, C. Mannino, and A. Sassano. Models and solution techniques for frequency assignment problems. Ann. Oper. Res., 153(1):79-129, 2007. Google Scholar
  2. J. Alber and J. Fiala. Geometric separation and exact solutions for the parameterized independent set problem on disk graphs. J. Algorithms, 52(2):134-151, 2004. Google Scholar
  3. M. J. Bannister, D. Eppstein, and J. A. Simons. Inapproximability of orthogonal compaction. J. Graph Algorithms Appl., 16(3):651-673, 2012. Google Scholar
  4. R. D. Barish and T. Shibuya. Proper colorability of segment intersection graphs. Proc. 28th COCOON, pages 573-584, 2022. Google Scholar
  5. T. Biedl and G. Kant. A better heuristic for orthogonal graph drawings. Comput. Geom., 9(3):159-180, 1998. Google Scholar
  6. C. Biró, É Bonnet, D. Marx, T. Miltzow, and P. Rzążewski. Fine-grained complexity of coloring unit disks and balls. J. Comput. Geom., 9(2):47-80, 2018. Google Scholar
  7. J. A. Bondy and U. S. R. Murty. Graph theory with applications. Macmillan Press: New York, NY, 1st edition, 1976. Google Scholar
  8. É Bonnet and P. Rzążewski. Optimality program in segment and string graphs. Algorithmica, 81:3047-3073, 2019. Google Scholar
  9. H. Breu and D. G. Kirkpatrick. Unit disk graph recognition is NP-hard. Comput. Geom., 9(1-2):3-24, 1998. Google Scholar
  10. R. L. Brooks. On colouring the nodes of a network. Math. Proc. Camb. Philos. Soc., 37(2):194-197, 1941. Google Scholar
  11. S. Cabello and M. Jejčič. Refining the hierarchies of classes of geometric intersection graphs. Electron. J. Comb., 24(1)(P1.33):1-19, 2017. Google Scholar
  12. J. Chalopin and D. Gonçalves. Every planar graph is the intersection graph of segments in the plane: extended abstract. Proc. 41st STOC, pages 631-638, 2009. Google Scholar
  13. S. Chaplick, P. Hell, Y. Otachi, T. Saitoh, and R. Uehara. Intersection dimension of bipartite graphs. Proc. TAMC, pages 323-340, 2014. Google Scholar
  14. M. Cygan, F. V. Fomin, A. Golovnev, A. S. Kulikov, I. Mihajlin, J. Pachocki, and A. Socała. Tight bounds for graph homomorphism and subgraph isomorphism. Proc. SODA, pages 1643-1649, 2016. Google Scholar
  15. M. de Berg, H. L. Bodlaender, S. Kisfaludi-Bak, D. Marx, and T. C. van der Zanden. A framework for exponential-time-hypothesis-tight algorithms and lower bounds in geometric intersection graphs. SIAM J. Comput., 49(6):1291-1331, 2020. Google Scholar
  16. D. de Werra and Y. Gay. Chromatic scheduling and frequency assignment. Discrete Appl. Math., 49(1-3):165-174, 1994. Google Scholar
  17. J. Deguchi, T. Sugimura, Y. Nakatani, T. Fukushima, and M. Koyanagi. Quantitative derivation and evaluation of wire length distribution in three-dimensional integrated circuits using simulated quenching. Jpn. J. Appl. Phys., 45(4B):3260-3265, 2006. Google Scholar
  18. R. Diestel. Graph theory. Springer-Verlag: Heidelberg, 5th edition, 2017. Google Scholar
  19. G. Ehrlich, S. Even, and R. E. Tarjan. Intersection graphs of curves in the plane. J. Comb. Theory. Ser. B, 21(1):8-20, 1976. Google Scholar
  20. P. Carmi et. al. Balanced line separators of unit disk graphs. Comput. Geom., 86:101575, 2020. Google Scholar
  21. F. V. Fomin, D. Lokshtanov, F. Panolan, S. Saurabh, and M. Zehavi. Finding, hitting and packing cycles in subexponential time on unit disk graphs. Discrete Comput. Geom., 62(4):879-911, 2019. Google Scholar
  22. J. Fox and J. Pach. Separator theorems and Turán-type results for planar intersection graphs. Adv. Math., 219(3):1070-1080, 2008. Google Scholar
  23. J. Fox and J. Pach. A separator theorem for string graphs and its applications. Comb. Probab. Comput., 19(3):371-390, 2010. Google Scholar
  24. J. Fox and J. Pach. Computing the independence number of intersection graphs. Proc. 22nd SODA, pages 1161-1165, 2011. Google Scholar
  25. J. Fox, J. Pach, and C. D. Tóth. A bipartite strengthening of the crossing lemma. J. Comb. Theory. Ser. B, 100(1):23-35, 2010. Google Scholar
  26. W. K. Hale. Frequency assignment: theory and applications. Proc. IEEE, 68(12):1497-1514, 1980. Google Scholar
  27. P. Hliněný and J. Kratochvíl. Representing graphs by disks and balls (a survey of recognition-complexity results). Discrete Math., 229(1-3):101-124, 2001. Google Scholar
  28. I. Holyer. The NP-completeness of edge coloring. SIAM J. Comput., 10(4):718-720, 1981. Google Scholar
  29. R. Impagliazzo and R. Paturi. On the complexity of k-SAT. J. Comput. Syst. Sci., 62(2):367-375, 2001. Google Scholar
  30. R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complexity? J. Comput. Syst. Sci., 63(4):512-530, 2001. Google Scholar
  31. S. Kisfaludi-Bak and T. C. van der Zanden. On the exact complexity of Hamiltonian cycle and q-colouring in disk graphs. Proc. 10th CIAC, pages 369-380, 2017. Google Scholar
  32. P. Koebe. Kontaktprobleme der konformen abbildung. Berichte Verhande. Sächs. Akad. Wiss. Leipzig, Math. -Phys. Klasse, 88:141-164, 1936. Google Scholar
  33. J. Kratochvíl. String graphs. II. Recognizing string graphs is NP-hard. J. Comb. Theory. Ser. B, 52(1):67-78, 1991. Google Scholar
  34. J. Kratochvíl. A special planar satisfiability problem and a consequence of its NP-completeness. Discrete Appl. Math., 52(3):233-252, 1994. Google Scholar
  35. J. Kratochvíl, M. Goljan, and P. Kučera. String graphs. Rozpr. Česk. Akad. Věd, Řada Mat. Přír. Věd, 96(3):1-96, 1986. Google Scholar
  36. J. Kratochvíl and A. Kuběna. On intersection representations of co-planar graphs. Discrete Math., 178(1-3):251-255, 1998. Google Scholar
  37. J. Kratochvíl and J. Matoušek. Intersection graphs of segments. J. Comb. Theory. Ser. B, 62(2):289-315, 1994. Google Scholar
  38. J. Kratochvíl and J. Nešetřil. Independent set and clique problems in intersection-defined classes of graphs. Comment. Math. Univ. Carolinae, 31(1):85-93, 1990. Google Scholar
  39. J. R. Lee. Separators in region intersection graphs. arXiv:1608.01612, pages 1-29, 2016. Google Scholar
  40. D. Leven and Z. Galil. NP completeness of finding the chromatic index of regular graphs. J. Algorithms, 4(1):35-44, 1983. Google Scholar
  41. R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM J. Appl. Math., 36(2):177-189, 1979. Google Scholar
  42. D. Lokshtanov, F. Panolan, S. Saurabh, J. Xue, and M. Zehavi. Subexponential parameterized algorithms on disk graphs (extended abstract). Proc. 33rd SODA, pages 2005-2031, 2022. Google Scholar
  43. D. Marx. The square root phenomenon in planar graphs. Proc. 40th ICALP, pages 1-28, 2013. Google Scholar
  44. D. Marx and M. Pilipczuk. Optimal parameterized algorithms for planar facility location problems using Voronoi diagrams. ACM Trans. Algorithms, 18(2):1-64, 2022. Google Scholar
  45. J. Matoušek. Near-optimal separators in string graphs. Comb. Probab. Comput., 23(1):135-139, 2014. Google Scholar
  46. G. L. Miller, S. H. Teng, W. Thurston, and S. A. Vavasis. Separators for sphere-packings and nearest neighbor graphs. J. ACM, 44(1):1-29, 1997. Google Scholar
  47. I. Mustaţă and M. Pergel. Unit grid intersection graphs: recognition and properties. arXiv:1306.1855, pages 1-19, 2013. Google Scholar
  48. A. Nahman, A. Fan, J. Chung, and R. Reif. Wire-length distribution of three-dimensional integrated circuits. Proc. IITC, pages 233-235, 1999. Google Scholar
  49. K. Okrasa and P. Rzążewski. Subexponential algorithms for variants of homomorphism problem in string graphs. Proc. 45th WG, pages 1-13, 2019. Google Scholar
  50. Y. Otachi, Y. Okamoto, and K. Yamazaki. Relationships between the class of unit grid intersection graphs and other classes of bipartite graphs. Discrete Appl. Math., 155(17):2383-2390, 2007. Google Scholar
  51. J. Pach and G. Tóth. Recognizing string graphs is decidable. Discrete Comput. Geom., 28(4):593-606, 2002. Google Scholar
  52. J. Pach and G. Tóth. How many ways can one draw a graph? Combinatorica, 26(5):559-576, 2006. Google Scholar
  53. F. Panolan, S. Saurabh, and M. Zehavi. Contraction decomposition in unit disk graphs and algorithmic applications in parameterized complexity. Proc. 30th SODA, pages 1035-1054, 2019. Google Scholar
  54. A. Papakostas and I. G. Tollis. Algorithms for area-efficient orthogonal drawings. Comput. Geom., 9(1-2):83-110, 1998. Google Scholar
  55. M. Patrignani. On the complexity of orthogonal compaction. Comput. Geom., 19(1):47-67, 2001. Google Scholar
  56. I. Penev, S. Oum, T. Miltzow, and L. Feuilloley. GROW 2017: open problems. URL: http://www.fields.utoronto.ca/sites/default/files/GROW_Open_Problems%202017.pdf.
  57. F. S. Roberts. On the boxicity and cubicity of a graph. In: Recent progress in combinatorics (W. T. Tutte, ed.). Academic Press: New York, NY, 1969. Google Scholar
  58. M. Schaefer, E. Sedgwick, and D. Štefankovič. Recognizing string graphs in NP. J. Comput. Syst. Sci., 67(2):365-380, 2003. Google Scholar
  59. M. Schaefer and D. Štefankovič. Decidability of string graphs. Proc. 33rd STOC, pages 241-246, 2001. Google Scholar
  60. M. Schaefer and D. Štefankovič. Decidability of string graphs. J. Comput. Syst. Sci., 68(2):319-334, 2004. Google Scholar
  61. E. R. Scheinerman. Intersection classes and multiple intersection parameters of graphs. Ph.D. thesis, Princeton University, 1984. Google Scholar
  62. F. W. Sinden. Topology of thin film RC circuits. Bell Syst. Tech. J., 45(9):1639-1662, 1966. Google Scholar
  63. W. D. Smith and N. C. Wormald. Geometric separator theorems and applications. Proc. 39th FOCS, pages 232-243, 1998. Google Scholar
  64. J. E. Steif. The frame dimension and the complete overlap dimension of a graph. J. Graph Theory, 9(2):285-299, 1985. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail