Light, Reliable Spanners

Authors Arnold Filtser, Yuval Gitlitz, Ofer Neiman



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2024.56.pdf
  • Filesize: 0.71 MB
  • 15 pages

Document Identifiers

Author Details

Arnold Filtser
  • Bar-Ilan University, Ramat-Gan, Israel
Yuval Gitlitz
  • Ben-Gurion University of the Negev, Be'er Sheva, Israel
Ofer Neiman
  • Ben-Gurion University of the Negev, Be'er Sheva, Israel

Cite AsGet BibTex

Arnold Filtser, Yuval Gitlitz, and Ofer Neiman. Light, Reliable Spanners. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 56:1-56:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SoCG.2024.56

Abstract

A ν-reliable spanner of a metric space (X,d), is a (dominating) graph H, such that for any possible failure set B ⊆ X, there is a set B^+ just slightly larger |B^+| ≤ (1+ν)⋅|B|, and all distances between pairs in X⧵B^+ are (approximately) preserved in H⧵B. Recently, there have been several works on sparse reliable spanners in various settings, but so far, the weight of such spanners has not been analyzed at all. In this work, we initiate the study of light reliable spanners, whose weight is proportional to that of the Minimum Spanning Tree (MST) of X. We first observe that unlike sparsity, the lightness of any deterministic reliable spanner is huge, even for the metric of the simple path graph. Therefore, randomness must be used: an oblivious reliable spanner is a distribution over spanners, and the bound on |B^+| holds in expectation. We devise an oblivious ν-reliable (2+2/(k-1))-spanner for any k-HST, whose lightness is ≈ ν^{-2}. We demonstrate a matching Ω(ν^{-2}) lower bound on the lightness (for any finite stretch). We also note that any stretch below 2 must incur linear lightness. For general metrics, doubling metrics, and metrics arising from minor-free graphs, we construct light tree covers, in which every tree is a k-HST of low weight. Combining these covers with our results for k-HSTs, we obtain oblivious reliable light spanners for these metric spaces, with nearly optimal parameters. In particular, for doubling metrics we get an oblivious ν-reliable (1+ε)-spanner with lightness ε^{-O(ddim)} ⋅ Õ(ν^{-2}⋅log n), which is best possible (up to lower order terms).

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
  • Theory of computation → Sparsification and spanners
Keywords
  • light spanner
  • reliable spanner
  • HST cover
  • doubling metric
  • minor free graphs

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Mohammad Ali Abam, Mark de Berg, Mohammad Farshi, and Joachim Gudmundsson. Region-fault tolerant geometric spanners. Discret. Comput. Geom., 41(4):556-582, 2009. Preliminary version published in SODA 2007. URL: https://doi.org/10.1007/s00454-009-9137-7.
  2. Abu Reyan Ahmed, Greg Bodwin, Faryad Darabi Sahneh, Keaton Hamm, Mohammad Javad Latifi Jebelli, Stephen G. Kobourov, and Richard Spence. Graph spanners: A tutorial review. Comput. Sci. Rev., 37:100253, 2020. URL: https://doi.org/10.1016/j.cosrev.2020.100253.
  3. Stephen Alstrup, Søren Dahlgaard, Arnold Filtser, Morten Stöckel, and Christian Wulff-Nilsen. Constructing light spanners deterministically in near-linear time. In Michael A. Bender, Ola Svensson, and Grzegorz Herman, editors, 27th Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany, volume 144 of LIPIcs, pages 4:1-4:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.ESA.2019.4.
  4. Ingo Althöfer, Gautam Das, David P. Dobkin, Deborah Joseph, and José Soares. On sparse spanners of weighted graphs. Discret. Comput. Geom., 9:81-100, 1993. URL: https://doi.org/10.1007/BF02189308.
  5. Yair Bartal, Arnold Filtser, and Ofer Neiman. On notions of distortion and an almost minimum spanning tree with constant average distortion. J. Comput. Syst. Sci., 105:116-129, 2019. preliminary version published in SODA 2016. URL: https://doi.org/10.1016/j.jcss.2019.04.006.
  6. Greg Bodwin. An alternate proof of near-optimal light spanners. CoRR, abs/2305.18647, 2023. URL: https://doi.org/10.48550/arXiv.2305.18647.
  7. G. Borradaile, H. Le, and C. Wulff-Nilsen. Minor-free graphs have light spanners. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science, FOCS '17, pages 767-778, 2017. URL: https://doi.org/10.1109/FOCS.2017.76.
  8. G. Borradaile, H. Le, and C. Wulff-Nilsen. Greedy spanners are optimal in doubling metrics. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA `19, pages 2371-2379, 2019. URL: https://doi.org/10.1137/1.9781611975482.145.
  9. Prosenjit Bose, Vida Dujmovic, Pat Morin, and Michiel H. M. Smid. Robust geometric spanners. SIAM J. Comput., 42(4):1720-1736, 2013. preliminary version published in SOCG 2013. URL: https://doi.org/10.1137/120874473.
  10. Kevin Buchin, Sariel Har-Peled, and Dániel Oláh. A spanner for the day after. Discret. Comput. Geom., 64(4):1167-1191, 2020. URL: https://doi.org/10.1007/s00454-020-00228-6.
  11. Kevin Buchin, Sariel Har-Peled, and Dániel Oláh. Sometimes reliable spanners of almost linear size. J. Comput. Geom., 13(1):178-196, 2022. URL: https://doi.org/10.20382/jocg.v13i1a6.
  12. T.-H. Hubert Chan, Mingfei Li, Li Ning, and Shay Solomon. New doubling spanners: Better and simpler. SIAM J. Comput., 44(1):37-53, 2015. URL: https://doi.org/10.1137/130930984.
  13. Timothy M. Chan, Sariel Har-Peled, and Mitchell Jones. On locality-sensitive orderings and their applications. SIAM J. Comput., 49(3):583-600, 2020. preliminary version published in ITCS 2019. URL: https://doi.org/10.1137/19M1246493.
  14. Shiri Chechik and Christian Wulff-Nilsen. Near-optimal light spanners. ACM Trans. Algorithms, 14(3):33:1-33:15, 2018. preliminary version published in SODA 2016. URL: https://doi.org/10.1145/3199607.
  15. Vincent Cohen-Addad, Arnold Filtser, Philip N. Klein, and Hung Le. On light spanners, low-treewidth embeddings and efficient traversing in minor-free graphs. CoRR, abs/2009.05039, 2020. To appear in FOCS 2020. URL: https://arxiv.org/abs/2009.05039.
  16. Artur Czumaj and Hairong Zhao. Fault-tolerant geometric spanners. Discret. Comput. Geom., 32(2):207-230, 2004. URL: https://doi.org/10.1007/s00454-004-1121-7.
  17. M. Elkin, A. Filtser, and O. Neiman. Distributed construction of light networks. In Proceedings of the 39th Symposium on Principles of Distributed Computing, PODC'20, pages 483-492, 2020. URL: https://doi.org/10.1145/3382734.3405701.
  18. Michael Elkin, Ofer Neiman, and Shay Solomon. Light spanners. SIAM J. Discret. Math., 29(3):1312-1321, 2015. URL: https://doi.org/10.1137/140979538.
  19. Arnold Filtser. Labeled nearest neighbor search and metric spanners via locality sensitive orderings. In Erin W. Chambers and Joachim Gudmundsson, editors, 39th International Symposium on Computational Geometry, SoCG 2023, June 12-15, 2023, Dallas, Texas, USA, volume 258 of LIPIcs, pages 33:1-33:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.SoCG.2023.33.
  20. Arnold Filtser, Yuval Gitlitz, and Ofer Neiman. Light, reliable spanners. CoRR, abs/2307.16612, 2023. URL: https://doi.org/10.48550/arXiv.2307.16612.
  21. Arnold Filtser and Hung Le. Locality-sensitive orderings and applications to reliable spanners. In Stefano Leonardi and Anupam Gupta, editors, STOC '22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 1066-1079. ACM, 2022. URL: https://doi.org/10.1145/3519935.3520042.
  22. Arnold Filtser and Ofer Neiman. Light spanners for high dimensional norms via stochastic decompositions. Algorithmica, 84(10):2987-3007, 2022. URL: https://doi.org/10.1007/s00453-022-00994-0.
  23. Arnold Filtser and Shay Solomon. The greedy spanner is existentially optimal. SIAM J. Comput., 49(2):429-447, 2020. preliminary version published in PODC 2016. URL: https://doi.org/10.1137/18M1210678.
  24. Lee-Ad Gottlieb. A light metric spanner. In IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 759-772, 2015. URL: https://doi.org/10.1109/FOCS.2015.52.
  25. Sariel Har-Peled, Manor Mendel, and Dániel Oláh. Reliable spanners for metric spaces. ACM Trans. Algorithms, 19(1):7:1-7:27, 2023. URL: https://doi.org/10.1145/3563356.
  26. Iyad A. Kanj, Ljubomir Perkovic, and Ge Xia. Computing lightweight spanners locally. In Gadi Taubenfeld, editor, Distributed Computing, 22nd International Symposium, DISC 2008, Arcachon, France, September 22-24, 2008. Proceedings, volume 5218 of Lecture Notes in Computer Science, pages 365-378. Springer, 2008. URL: https://doi.org/10.1007/978-3-540-87779-0_25.
  27. P. N. Klein. Subset spanner for planar graphs, with application to subset TSP. In Proceedings of the 38th Annual ACM Symposium on Theory of Computing, STOC '06, pages 749-756, 2006. URL: https://doi.org/10.1145/1132516.1132620.
  28. Philip N. Klein. A linear-time approximation scheme for TSP in undirected planar graphs with edge-weights. SIAM J. Comput., 37(6):1926-1952, 2008. URL: https://doi.org/10.1137/060649562.
  29. Hung Le. A PTAS for subset TSP in minor-free graphs. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 2279-2298, 2020. URL: https://doi.org/10.1137/1.9781611975994.140.
  30. Hung Le and Shay Solomon. A unified framework for light spanners. In Barna Saha and Rocco A. Servedio, editors, Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 295-308. ACM, 2023. URL: https://doi.org/10.1145/3564246.3585185.
  31. Hung Le, Shay Solomon, and Cuong Than. Optimal fault-tolerant spanners in euclidean and doubling metrics: Breaking the Ω(log n) lightness barrier. CoRR, abs/2306.11226, 2023. To appear in FOCS 2023. URL: https://doi.org/10.48550/arXiv.2306.11226.
  32. Christos Levcopoulos, Giri Narasimhan, and Michiel H. M. Smid. Efficient algorithms for constructing fault-tolerant geometric spanners. In Jeffrey Scott Vitter, editor, Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998, pages 186-195. ACM, 1998. URL: https://doi.org/10.1145/276698.276734.
  33. Giri Narasimhan and Michiel H. M. Smid. Geometric spanner networks. Cambridge University Press, 2007. URL: https://doi.org/10.1017/CBO9780511546884.
  34. D. Peleg and A. A. Schäffer. Graph spanners. Journal of Graph Theory, 13(1):99-116, 1989. URL: https://doi.org/10.1002/jgt.3190130114.
  35. Daniel Dominic Sleator and Robert Endre Tarjan. A data structure for dynamic trees. J. Comput. Syst. Sci., 26(3):362-391, 1983. URL: https://doi.org/10.1016/0022-0000(83)90006-5.
  36. Shay Solomon. From hierarchical partitions to hierarchical covers: optimal fault-tolerant spanners for doubling metrics. In David B. Shmoys, editor, Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 363-372. ACM, 2014. URL: https://doi.org/10.1145/2591796.2591864.