@InProceedings{lolipiccolomini_et_al:LIPIcs.TIME.2019.10,
author = {Loli Piccolomini, Elena and Gandolfi, Stefano and Poluzzi, Luca and Tavasci, Luca and Cascarano, Pasquale and Pascucci, Andrea},
title = {{Recurrent Neural Networks Applied to GNSS Time Series for Denoising and Prediction}},
booktitle = {26th International Symposium on Temporal Representation and Reasoning (TIME 2019)},
pages = {10:1--10:12},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-127-6},
ISSN = {1868-8969},
year = {2019},
volume = {147},
editor = {Gamper, Johann and Pinchinat, Sophie and Sciavicco, Guido},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2019.10},
URN = {urn:nbn:de:0030-drops-113687},
doi = {10.4230/LIPIcs.TIME.2019.10},
annote = {Keywords: Deep Neural Networks, Recurrent Neural Networks, Time Series Denoising, Time Series Prediction}
}