Efficient Optimal Control of Open Quantum Systems

Authors Wenhao He, Tongyang Li , Xiantao Li , Zecheng Li, Chunhao Wang, Ke Wang



PDF
Thumbnail PDF

File

LIPIcs.TQC.2024.3.pdf
  • Filesize: 0.85 MB
  • 23 pages

Document Identifiers

Author Details

Wenhao He
  • Center for Computational Science and Engineering, MIT, Cambridge, MA, USA
  • School of Physics, Peking University, Beijing, China
Tongyang Li
  • Center on Frontiers of Computing Studies, School of Computer Science, Peking University, Beijing, China
Xiantao Li
  • Department of Mathematics, Pennsylvania State University, University Park, PA, USA
Zecheng Li
  • Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA, USA
Chunhao Wang
  • Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA, USA
Ke Wang
  • Department of Mathematics, Pennsylvania State University, University Park, PA, USA

Acknowledgements

We thank the anonymous reviewers for the valuable feedback.

Cite AsGet BibTex

Wenhao He, Tongyang Li, Xiantao Li, Zecheng Li, Chunhao Wang, and Ke Wang. Efficient Optimal Control of Open Quantum Systems. In 19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 310, pp. 3:1-3:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.TQC.2024.3

Abstract

The optimal control problem for open quantum systems can be formulated as a time-dependent Lindbladian that is parameterized by a number of time-dependent control variables. Given an observable and an initial state, the goal is to tune the control variables so that the expected value of some observable with respect to the final state is maximized. In this paper, we present algorithms for solving this optimal control problem efficiently, i.e., having a poly-logarithmic dependency on the system dimension, which is exponentially faster than best-known classical algorithms. Our algorithms are hybrid, consisting of both quantum and classical components. The quantum procedure simulates time-dependent Lindblad evolution that drives the initial state to the final state, and it also provides access to the gradients of the objective function via quantum gradient estimation. The classical procedure uses the gradient information to update the control variables. At the technical level, we provide the first (to the best of our knowledge) simulation algorithm for time-dependent Lindbladians with an 𝓁₁-norm dependence. As an alternative, we also present a simulation algorithm in the interaction picture to improve the algorithm for the cases where the time-independent component of a Lindbladian dominates the time-dependent part. On the classical side, we heavily adapt the state-of-the-art classical optimization analysis to interface with the quantum part of our algorithms. Both the quantum simulation techniques and the classical optimization analyses might be of independent interest.

Subject Classification

ACM Subject Classification
  • Theory of computation → Quantum computation theory
Keywords
  • Quantum algorithm
  • quantum optimal control
  • Lindbladian simulation
  • accelerated gradient descent

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Mohamed Abdelhafez, David I. Schuster, and Jens Koch. Gradient-based optimal control of open quantum systems using quantum trajectories and automatic differentiation. Physical Review A, 99(5):052327, 2019. Google Scholar
  2. Claudio Altafini. Coherent control of open quantum dynamical systems. Physical Review A, 70(6):062321, 2004. Google Scholar
  3. Yossi Arjevani, Yair Carmon, John C. Duchi, Dylan J. Foster, Nathan Srebro, and Blake Woodworth. Lower bounds for non-convex stochastic optimization. Mathematical Programming, 199(1-2):165-214, 2023. Google Scholar
  4. Leonardo Banchi and Gavin E Crooks. Measuring analytic gradients of general quantum evolution with the stochastic parameter shift rule. Quantum, 5:386, 2021. Google Scholar
  5. Dominic W Berry, Andrew M Childs, Yuan Su, Xin Wang, and Nathan Wiebe. Time-dependent Hamiltonian simulation with L¹-norm scaling. Quantum, 4:254, 2020. Google Scholar
  6. Samuel Boutin, Christian Kraglund Andersen, Jayameenakshi Venkatraman, Andrew J. Ferris, and Alexandre Blais. Resonator reset in circuit QED by optimal control for large open quantum systems. Physical Review A, 96(4):042315, 2017. Google Scholar
  7. Fred Brauer. Perturbations of nonlinear systems of differential equations. Journal of Mathematical Analysis and Applications, 14(2):198-206, 1966. Google Scholar
  8. Constantin Brif, Raj Chakrabarti, and Herschel Rabitz. Control of quantum phenomena: past, present and future. New Journal of Physics, 12(7):075008, 2010. Google Scholar
  9. Tommaso Caneva, Tommaso Calarco, and Simone Montangero. Chopped random-basis quantum optimization. Physical Review A, 84(2):022326, 2011. Google Scholar
  10. Yu Cao and Jianfeng Lu. Structure-preserving numerical schemes for Lindblad equations. arXiv preprint, 2021. URL: https://arxiv.org/abs/2103.01194.
  11. Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary points II: first-order methods. Mathematical Programming, 185(1-2):315-355, 2021. Google Scholar
  12. Davide Castaldo, Marta Rosa, and Stefano Corni. Quantum optimal control with quantum computers: A hybrid algorithm featuring machine learning optimization. Physical Review A, 103(2):022613, 2021. Google Scholar
  13. Raj Chakrabarti and Herschel Rabitz. Quantum control landscapes. International Reviews in Physical Chemistry, 26(4):671-735, 2007. Google Scholar
  14. Andrew M Childs and Tongyang Li. Efficient simulation of sparse Markovian quantum dynamics. Quantum Information & Computation, 17(11-12):901-947, 2017. Google Scholar
  15. Richard Cleve and Chunhao Wang. Efficient quantum algorithms for simulating Lindblad evolution. In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2017. Google Scholar
  16. Pierre De Fouquieres and Sophie G Schirmer. A closer look at quantum control landscapes and their implication for control optimization. Infinite dimensional analysis, quantum probability and related topics, 16(03):1350021, 2013. Google Scholar
  17. Pierre de Fouquieres, Sophie G. Schirmer, Steffen J. Glaser, and Ilya Kuprov. Second order gradient ascent pulse engineering. Journal of Magnetic Resonance, 212(2):412-417, 2011. Google Scholar
  18. Domenico d’Alessandro. Introduction to quantum control and dynamics. CRC press, 2021. Google Scholar
  19. Xiaozhen Ge, Rebing Wu, and Herschel Rabitz. Optimization landscape of quantum control systems. Complex System Modeling and Simulation, 1(2):77-90, 2021. Google Scholar
  20. D Geppert, L Seyfarth, and R de Vivie-Riedle. Laser control schemes for molecular switches. Applied Physics B, 79:987-992, 2004. Google Scholar
  21. András Gilyén, Srinivasan Arunachalam, and Nathan Wiebe. Optimizing quantum optimization algorithms via faster quantum gradient computation. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1425-1444. SIAM, 2019. Google Scholar
  22. András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing. ACM, June 2019. URL: https://doi.org/10.1145/3313276.3316366.
  23. Michael H. Goerz. Optimizing robust quantum gates in open quantum systems. PhD thesis, Universitä"t Kassel, 2015. Google Scholar
  24. Vittorio Gorini, Andrzej Kossakowski, and Ennackal Chandy George Sudarshan. Completely positive dynamical semigroups of N-level systems. Journal of Mathematical Physics, 17(5):821-825, 1976. Google Scholar
  25. Hartmut Häffner, Christian F. Roos, and Rainer Blatt. Quantum computing with trapped ions. Physics Reports, 469(4):155-203, 2008. Google Scholar
  26. Wenhao He, Tongyang Li, Xiantao Li, Zecheng Li, Chunhao Wang, and Ke Wang. Efficient optimal control of open quantum systems. arXiv preprint, 2024. URL: https://arxiv.org/abs/2405.19245.
  27. Chi Jin, Praneeth Netrapalli, and Michael I. Jordan. Accelerated gradient descent escapes saddle points faster than gradient descent, 2017. URL: https://arxiv.org/abs/1711.10456.
  28. Stephen P. Jordan. Fast quantum algorithm for numerical gradient estimation. Physical Review Letters, 95(5), July 2005. URL: https://doi.org/10.1103/physrevlett.95.050501.
  29. Navin Khaneja, Timo Reiss, Cindie Kehlet, Thomas Schulte-Herbrüggen, and Steffen J. Glaser. Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. Journal of Magnetic Resonance, 172(2):296-305, 2005. Google Scholar
  30. Mária Kieferová, Artur Scherer, and Dominic W. Berry. Simulating the dynamics of time-dependent Hamiltonians with a truncated Dyson series. Physical Review A, 99(4):042314, 2019. Google Scholar
  31. Christiane P. Koch. Controlling open quantum systems: tools, achievements, and limitations. Journal of Physics: Condensed Matter, 28(21):213001, 2016. Google Scholar
  32. Christiane P. Koch, Ugo Boscain, Tommaso Calarco, Gunther Dirr, Stefan Filipp, Steffen J. Glaser, Ronnie Kosloff, Simone Montangero, Thomas Schulte-Herbrüggen, Dominique Sugny, and Frank K. Wilhelm. Quantum optimal control in quantum technologies. strategic report on current status, visions and goals for research in europe. EPJ Quantum Technology, 9(1):19, 2022. Google Scholar
  33. Jr-Shin Li, Justin Ruths, and Dionisis Stefanatos. A pseudospectral method for optimal control of open quantum systems. The Journal of Chemical Physics, 131(16), 2009. Google Scholar
  34. Jun Li, Xiaodong Yang, Xinhua Peng, and Chang-Pu Sun. Hybrid quantum-classical approach to quantum optimal control. Physical review letters, 118(15):150503, 2017. Google Scholar
  35. Xiantao Li and Chunhao Wang. Efficient quantum algorithms for quantum optimal control. In International Conference on Machine Learning, pages 19982-19994. PMLR, 2023. Google Scholar
  36. Xiantao Li and Chunhao Wang. Simulating Markovian open quantum systems using higher-order series expansion. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2023. Google Scholar
  37. Xiantao Li and Chunhao Wang. Succinct description and efficient simulation of non-Markovian open quantum systems. Communications in Mathematical Physics, 401(1):147-183, January 2023. URL: https://doi.org/10.1007/s00220-023-04638-4.
  38. Goran Lindblad. On the generators of quantum dynamical semigroups. Communications in Mathematical Physics, 48(2):119-130, 1976. Google Scholar
  39. Jin-Peng Liu and Lin Lin. Dense outputs from quantum simulations. arXiv preprint, 2023. URL: https://arxiv.org/abs/2307.14441.
  40. Seth Lloyd and Simone Montangero. Information theoretical analysis of quantum optimal control. Physical Review Letters, 113(1):010502, 2014. Google Scholar
  41. Guang Hao Low and Nathan Wiebe. Hamiltonian simulation in the interaction picture. arXiv preprint, 2018. URL: https://arxiv.org/abs/1805.00675.
  42. Alicia B. Magann, Christian Arenz, Matthew D. Grace, Tak-San Ho, Robert L. Kosut, Jarrod R. McClean, Herschel A. Rabitz, and Mohan Sarovar. From pulses to circuits and back again: A quantum optimal control perspective on variational quantum algorithms. PRX Quantum, 2(1):010101, 2021. Google Scholar
  43. Alicia B Magann, Matthew D Grace, Herschel A Rabitz, and Mohan Sarovar. Digital quantum simulation of molecular dynamics and control. Physical Review Research, 3(2):023165, 2021. Google Scholar
  44. Yurii Evgen'evich Nesterov. A method of solving a convex programming problem with convergence rate o(1/k²). Doklady Akademii Nauk, 269(3):543-547, 1983. Google Scholar
  45. José P Palao and Ronnie Kosloff. Optimal control theory for unitary transformations. Physical Review A, 68(6):062308, 2003. Google Scholar
  46. Daniel M. Reich. Efficient Characterisation and Optimal Control of Open Quantum Systems-Mathematical Foundations and Physical Applications. PhD thesis, Universitä"t Kassel, 2015. Google Scholar
  47. Yunong Shi, Pranav Gokhale, Prakash Murali, Jonathan M. Baker, Casey Duckering, Yongshan Ding, Natalie C. Brown, Christopher Chamberland, Ali Javadi-Abhari, Andrew W. Cross, David I. Schuster, Kenneth R. Brown, Margaret Martonosi, and Frederic T. Chong. Resource-efficient quantum computing by breaking abstractions. Proceedings of the IEEE, 108(8):1353-1370, 2020. Google Scholar
  48. Wusheng Zhu, Jair Botina, and Herschel Rabitz. Rapidly convergent iteration methods for quantum optimal control of population. The Journal of Chemical Physics, 108(5):1953-1963, 1998. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail