Quantum Non-Identical Mean Estimation: Efficient Algorithms and Fundamental Limits

Authors Jiachen Hu , Tongyang Li , Xinzhao Wang , Yecheng Xue , Chenyi Zhang , Han Zhong



PDF
Thumbnail PDF

File

LIPIcs.TQC.2024.9.pdf
  • Filesize: 0.8 MB
  • 21 pages

Document Identifiers

Author Details

Jiachen Hu
  • Peking University, Beijing, China
Tongyang Li
  • Peking University, Beijing, China
Xinzhao Wang
  • Peking University, Beijing, China
Yecheng Xue
  • Peking University, Beijing, China
Chenyi Zhang
  • Stanford University, CA, USA
Han Zhong
  • Peking University, Beijing, China

Cite AsGet BibTex

Jiachen Hu, Tongyang Li, Xinzhao Wang, Yecheng Xue, Chenyi Zhang, and Han Zhong. Quantum Non-Identical Mean Estimation: Efficient Algorithms and Fundamental Limits. In 19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 310, pp. 9:1-9:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.TQC.2024.9

Abstract

We systematically investigate quantum algorithms and lower bounds for mean estimation given query access to non-identically distributed samples. On the one hand, we give quantum mean estimators with quadratic quantum speed-up given samples from different bounded or sub-Gaussian random variables. On the other hand, we prove that, in general, it is impossible for any quantum algorithm to achieve quadratic speed-up over the number of classical samples needed to estimate the mean μ, where the samples come from different random variables with mean close to μ. Technically, our quantum algorithms reduce bounded and sub-Gaussian random variables to the Bernoulli case, and use an uncomputation trick to overcome the challenge that direct amplitude estimation does not work with non-identical query access. Our quantum query lower bounds are established by simulating non-identical oracles by parallel oracles, and also by an adversarial method with non-identical oracles. Both results pave the way for proving quantum query lower bounds with non-identical oracles in general, which may be of independent interest.

Subject Classification

ACM Subject Classification
  • Theory of computation → Quantum query complexity
Keywords
  • Quantum algorithms
  • Mean estimation
  • Non-identical samples
  • Query complexity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Charles H. Bennett. Time/space trade-offs for reversible computation. SIAM Journal on Computing, 18(4):766-776, 1989. URL: https://doi.org/10.1137/0218053.
  2. Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. Tight bounds on quantum searching. Fortschritte der Physik: Progress of Physics, 46(4-5):493-505, 1998. Google Scholar
  3. Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. Quantum amplitude amplification and estimation. Contemporary Mathematics, 305:53-74, 2002. Google Scholar
  4. Paul Burchard. Lower bounds for parallel quantum counting. CoRR, abs/1910.04555, 2019. URL: https://doi.org/10.48550/arXiv.1910.04555.
  5. Shouvanik Chakrabarti, Rajiv Krishnakumar, Guglielmo Mazzola, Nikitas Stamatopoulos, Stefan Woerner, and William J. Zeng. A threshold for quantum advantage in derivative pricing. Quantum, 5:463, 2021. URL: https://doi.org/10.22331/q-2021-06-01-463.
  6. Arjan Cornelissen and Yassine Hamoudi. A sublinear-time quantum algorithm for approximating partition functions. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1245-1264. SIAM, 2023. URL: https://doi.org/10.1137/1.9781611977554.ch46.
  7. Paul Dagum, Richard Karp, Michael Luby, and Sheldon Ross. An optimal algorithm for Monte Carlo estimation. SIAM Journal on Computing, 29(5):1484-1496, 2000. URL: https://doi.org/10.1137/S0097539797315306.
  8. Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu. On the sample complexity of the linear quadratic regulator. Foundations of Computational Mathematics, 20(4):633-679, 2020. URL: https://doi.org/10.1007/s10208-019-09426-y.
  9. Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pages 212-219, 1996. URL: https://doi.org/10.1145/237814.237866.
  10. Lov K. Grover and Jaikumar Radhakrishnan. Quantum search for multiple items using parallel queries. arXiv preprint, 2004. URL: https://arxiv.org/abs/quant-ph/0407217.
  11. Yassine Hamoudi. Quantum sub-gaussian mean estimator. CoRR, abs/2108.12172, 2021. URL: https://doi.org/10.48550/arXiv.2108.12172.
  12. Yassine Hamoudi and Frédéric Magniez. Quantum chebyshev’s inequality and applications. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019), 2019. Google Scholar
  13. Peter Hoyer, Troy Lee, and Robert Spalek. Negative weights make adversaries stronger. In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pages 526-535, 2007. Google Scholar
  14. Jiachen Hu, Tongyang Li, Xinzhao Wang, Yecheng Xue, Chenyi Zhang, and Han Zhong. Quantum non-identical mean estimation: Efficient algorithms and fundamental limits, 2024. URL: https://arxiv.org/abs/2405.12838.
  15. Stacey Jeffery, Frederic Magniez, and Ronald De Wolf. Optimal parallel quantum query algorithms. Algorithmica, 79:509-529, 2017. URL: https://doi.org/10.1007/s00453-016-0206-z.
  16. Robin Kothari and Ryan O'Donnell. Mean estimation when you have the source code; or, quantum Monte Carlo methods. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1186-1215. SIAM, 2023. URL: https://doi.org/10.1137/1.9781611977554.ch44.
  17. Ashley Montanaro. Quantum speedup of Monte Carlo methods. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471(2181):20150301, 2015. Google Scholar
  18. Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum information. Phys. Today, 54(2):60, 2001. Google Scholar
  19. Ben W Reichardt. Span programs and quantum query complexity: The general adversary bound is nearly tight for every boolean function. In 2009 50th Annual IEEE Symposium on Foundations of Computer Science, pages 544-551. IEEE, 2009. URL: https://doi.org/10.1109/FOCS.2009.55.
  20. Max Simchowitz and Dylan Foster. Naive exploration is optimal for online LQR. In International Conference on Machine Learning, pages 8937-8948. PMLR, 2020. URL: http://proceedings.mlr.press/v119/simchowitz20a.html.
  21. Roman Vershynin. High-dimensional probability: An introduction with applications in data science, volume 47. Cambridge university press, 2018. Google Scholar
  22. Theodore J. Yoder, Guang Hao Low, and Isaac L. Chuang. Fixed-point quantum search with an optimal number of queries. Physical review letters, 113(21):210501, 2014. Google Scholar
  23. Christof Zalka. Grover’s quantum searching algorithm is optimal. Physical Review A, 60(4):2746, 1999. Google Scholar
  24. Zhicheng Zhang, Qisheng Wang, and Mingsheng Ying. Parallel quantum algorithm for Hamiltonian simulation. Quantum, 8:1228, 2024. URL: https://doi.org/10.22331/q-2024-01-15-1228.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail