An Effective Construction for Cut-And-Project Rhombus Tilings with Global n-Fold Rotational Symmetry

Author Victor H. Lutfalla



PDF
Thumbnail PDF

File

OASIcs.AUTOMATA.2021.9.pdf
  • Filesize: 0.76 MB
  • 12 pages

Document Identifiers

Author Details

Victor H. Lutfalla
  • Laboratoire d'Informatique de Paris Nord, Université Sorbonne Paris Nord, France

Acknowledgements

I want to thank Emmanuel Jeandel for pointing me towards the article Trigonometric diophantine equations (On vanishing sums of roots of unit) [Conway and Jones, 1976] when I presented him with the problem of regularity of multigrids. I also want to thank my advisor Thomas Fernique and my colleagues Lionel Pournin and Thierry Monteil for their help and advice.

Cite AsGet BibTex

Victor H. Lutfalla. An Effective Construction for Cut-And-Project Rhombus Tilings with Global n-Fold Rotational Symmetry. In 27th IFIP WG 1.5 International Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA 2021). Open Access Series in Informatics (OASIcs), Volume 90, pp. 9:1-9:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
https://doi.org/10.4230/OASIcs.AUTOMATA.2021.9

Abstract

We give an explicit and effective construction for rhombus cut-and-project tilings with global n-fold rotational symmetry for any n. This construction is based on the dualization of regular n-fold multigrids. The main point is to prove the regularity of these multigrids, for this we use a result on trigonometric diophantine equations. A SageMath program that computes these tilings and outputs svg files is publicly available in [Lutfalla, 2021].

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Discrete mathematics
  • Mathematics of computing → Combinatorics
Keywords
  • Cut-and-project tiling
  • Rhombus tiling
  • Aperiodic order
  • Rotational symmetry
  • De Bruijn multigrid
  • Trigonometric diophantine equations

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. M. Baake and U. Grimm. Aperiodic Order: A Mathematical Invitation, volume 1. Cambridge University Press, 2013. URL: https://doi.org/10.1017/9781139033862.
  2. F.P.M. Beenker. Algebraic theory of non-periodic tilings of the plane by two simple building blocks : a square and a rhombus, 1982. Technical report. Google Scholar
  3. J. Conway and A. Jones. Trigonometric diophantine equations (on vanishing sums of roots of unity). Acta Arithmetica, 30(3):229-240, 1976. URL: https://doi.org/10.4064/aa-30-3-229-240.
  4. N. G. De Bruijn. Algebraic theory of penrose’s nonperiodic tilings of the plane. i and ii. Kon. Nederl. Akad. Wetensch. Proc. Ser. A, 43(84):39-66, 1981. URL: https://doi.org/10.1016/1385-7258(81)90016-0.
  5. F. Gähler and J. Rhyner. Equivalence of the generalised grid and projection methods for the construction of quasiperiodic tilings. Journal of Physics A: Mathematical and General, 19(2):267, 1986. URL: https://doi.org/10.1088/0305-4470/19/2/020.
  6. J. Kari and V. H. Lutfalla. Substitution planar tilings with n-fold rotational symmetry, 2020. URL: http://arxiv.org/abs/2010.01879.
  7. V. H. Lutfalla. n-fold multigrid dual tilings, 2021. Software repository. URL: https://doi.org/10.5281/zenodo.4698387.
  8. R. Penrose. The role of aesthetics in pure and applied mathematical research. Bull. Inst. Math. Appl., 10:266-271, 1974. Google Scholar
  9. M. Senechal. Quasicrystals and geometry. CUP Archive, 1996. Google Scholar