2 Search Results for "Adsul, Bharat"


Document
Propositional Dynamic Logic and Asynchronous Cascade Decompositions for Regular Trace Languages

Authors: Bharat Adsul, Paul Gastin, Saptarshi Sarkar, and Pascal Weil

Published in: LIPIcs, Volume 243, 33rd International Conference on Concurrency Theory (CONCUR 2022)


Abstract
One of the main motivations for this work is to obtain a distributed Krohn-Rhodes theorem for Mazurkiewicz traces. Concretely, we focus on the recently introduced operation of local cascade product of asynchronous automata and ask if every regular trace language can be accepted by a local cascade product of "simple" asynchronous automata. Our approach crucially relies on the development of a local and past-oriented propositional dynamic logic (LocPastPDL) over traces which is shown to be expressively complete with respect to all regular trace languages. An event-formula of LocPastPDL allows to reason about the causal past of an event and a path-formula of LocPastPDL, localized at a process, allows to march along the sequence of past-events in which that process participates, checking for local regular patterns interspersed with local tests of other event-formulas. We also use additional constant formulas to compare the leading process events from the causal past. The new logic LocPastPDL is of independent interest, and the proof of its expressive completeness is rather subtle. Finally, we provide a translation of LocPastPDL formulas into local cascade products. More precisely, we show that every LocPastPDL formula can be computed by a restricted local cascade product of the gossip automaton and localized 2-state asynchronous reset automata and localized asynchronous permutation automata.

Cite as

Bharat Adsul, Paul Gastin, Saptarshi Sarkar, and Pascal Weil. Propositional Dynamic Logic and Asynchronous Cascade Decompositions for Regular Trace Languages. In 33rd International Conference on Concurrency Theory (CONCUR 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 243, pp. 28:1-28:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{adsul_et_al:LIPIcs.CONCUR.2022.28,
  author =	{Adsul, Bharat and Gastin, Paul and Sarkar, Saptarshi and Weil, Pascal},
  title =	{{Propositional Dynamic Logic and Asynchronous Cascade Decompositions for Regular Trace Languages}},
  booktitle =	{33rd International Conference on Concurrency Theory (CONCUR 2022)},
  pages =	{28:1--28:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-246-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{243},
  editor =	{Klin, Bartek and Lasota, S{\l}awomir and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2022.28},
  URN =		{urn:nbn:de:0030-drops-170915},
  doi =		{10.4230/LIPIcs.CONCUR.2022.28},
  annote =	{Keywords: Mazurkiewicz traces, propositional dynamic logic, regular trace languages, asynchronous automata, cascade product, Krohn Rhodes theorem}
}
Document
Wreath/Cascade Products and Related Decomposition Results for the Concurrent Setting of Mazurkiewicz Traces

Authors: Bharat Adsul, Paul Gastin, Saptarshi Sarkar, and Pascal Weil

Published in: LIPIcs, Volume 171, 31st International Conference on Concurrency Theory (CONCUR 2020)


Abstract
We develop a new algebraic framework to reason about languages of Mazurkiewicz traces. This framework supports true concurrency and provides a non-trivial generalization of the wreath product operation to the trace setting. A novel local wreath product principle has been established. The new framework is crucially used to propose a decomposition result for recognizable trace languages, which is an analogue of the Krohn-Rhodes theorem. We prove this decomposition result in the special case of acyclic architectures and apply it to extend Kamp’s theorem to this setting. We also introduce and analyze distributed automata-theoretic operations called local and global cascade products. Finally, we show that aperiodic trace languages can be characterized using global cascade products of localized and distributed two-state reset automata.

Cite as

Bharat Adsul, Paul Gastin, Saptarshi Sarkar, and Pascal Weil. Wreath/Cascade Products and Related Decomposition Results for the Concurrent Setting of Mazurkiewicz Traces. In 31st International Conference on Concurrency Theory (CONCUR 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 171, pp. 19:1-19:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{adsul_et_al:LIPIcs.CONCUR.2020.19,
  author =	{Adsul, Bharat and Gastin, Paul and Sarkar, Saptarshi and Weil, Pascal},
  title =	{{Wreath/Cascade Products and Related Decomposition Results for the Concurrent Setting of Mazurkiewicz Traces}},
  booktitle =	{31st International Conference on Concurrency Theory (CONCUR 2020)},
  pages =	{19:1--19:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-160-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{171},
  editor =	{Konnov, Igor and Kov\'{a}cs, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2020.19},
  URN =		{urn:nbn:de:0030-drops-128319},
  doi =		{10.4230/LIPIcs.CONCUR.2020.19},
  annote =	{Keywords: Mazurkiewicz traces, asynchronous automata, wreath product, cascade product, Krohn Rhodes decomposition theorem, local temporal logic over traces}
}
  • Refine by Author
  • 2 Adsul, Bharat
  • 2 Gastin, Paul
  • 2 Sarkar, Saptarshi
  • 2 Weil, Pascal

  • Refine by Classification
  • 2 Theory of computation → Algebraic language theory
  • 1 Theory of computation → Concurrency
  • 1 Theory of computation → Distributed computing models
  • 1 Theory of computation → Modal and temporal logics

  • Refine by Keyword
  • 2 Mazurkiewicz traces
  • 2 asynchronous automata
  • 2 cascade product
  • 1 Krohn Rhodes decomposition theorem
  • 1 Krohn Rhodes theorem
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2020
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail