3 Search Results for "Chen, Yen-Ting"


Document
Safe Sequences via Dominators in DAGs for Path-Covering Problems

Authors: Francisco Sena, Romeo Rizzi, and Alexandru I. Tomescu

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
A path-covering problem on a directed acyclic graph (DAG) requires finding a set of source-to-sink paths that cover all the nodes, all the arcs, or subsets thereof, and additionally they are optimal with respect to some function. In this paper we study safe sequences of nodes or arcs, namely sequences that appear in some path of every path cover of a DAG. We show that safe sequences admit a simple characterization via cutnodes. Moreover, we establish a connection between maximal safe sequences and leaf-to-root paths in the source- and sink-dominator trees of the DAG, which may be of independent interest in the extensive literature on dominators. With dominator trees, safe sequences admit an O(n)-size representation and a linear-time output-sensitive enumeration algorithm running in time O(m + o), where n and m are the number of nodes and arcs, respectively, and o is the total length of the maximal safe sequences. We then apply maximal safe sequences to simplify Integer Linear Programs (ILPs) for two path-covering problems, LeastSquares and MinPathError, which are at the core of RNA transcript assembly problems from bioinformatics. On various datasets, maximal safe sequences can be computed in under 0.1 seconds per graph, on average, and ILP solvers whose search space is reduced in this manner exhibit significant speed-ups. For example on graphs with a large width, average speed-ups are in the range 50-250× for MinPathError and in the range 80-350× for LeastSquares. Optimizing ILPs using safe sequences can thus become a fast building block of practical RNA transcript assembly tools, and more generally, of path-covering problems.

Cite as

Francisco Sena, Romeo Rizzi, and Alexandru I. Tomescu. Safe Sequences via Dominators in DAGs for Path-Covering Problems. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 55:1-55:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{sena_et_al:LIPIcs.ESA.2025.55,
  author =	{Sena, Francisco and Rizzi, Romeo and Tomescu, Alexandru I.},
  title =	{{Safe Sequences via Dominators in DAGs for Path-Covering Problems}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{55:1--55:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.55},
  URN =		{urn:nbn:de:0030-drops-245230},
  doi =		{10.4230/LIPIcs.ESA.2025.55},
  annote =	{Keywords: directed acyclic graph, path cover, dominator tree, integer linear programming, least squares, minimum path error}
}
Document
Toward an Earth-Independent System for EVA Mission Planning: Integrating Physical Models, Domain Knowledge, and Agentic RAG to Provide Explainable LLM-Based Decision Support

Authors: Kaisheng Li and Richard S. Whittle

Published in: OASIcs, Volume 130, Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)


Abstract
We propose a unified framework for an Earth‑independent AI system that provides explainable, context‑aware decision support for EVA mission planning by integrating six core components: a fine‑tuned EVA domain LLM, a retrieval‑augmented knowledge base, a short-term memory store, physical simulation models, an agentic orchestration layer, and a multimodal user interface. To ground our design, we analyze the current roles and substitution potential of the Mission Control Center - identifying which procedural and analytical functions can be automated onboard while preserving human oversight for experiential and strategic tasks. Building on this framework, we introduce RASAGE (Retrieval & Simulation Augmented Guidance Agent for Exploration), a proof‑of‑concept toolset that combines Microsoft Phi‑4‑mini‑instruct with a FAISS (Facebook AI Similarity Search)‑powered EVA knowledge base and custom A* path planning and hypogravity metabolic models to generate grounded, traceable EVA plans. We outline a staged validation strategy to evaluate improvements in route efficiency, metabolic prediction accuracy, anomaly response effectiveness, and crew trust under realistic communication delays. Our findings demonstrate the feasibility of replicating key Mission Control functions onboard, enhancing crew autonomy, reducing cognitive load, and improving safety for deep‑space exploration missions.

Cite as

Kaisheng Li and Richard S. Whittle. Toward an Earth-Independent System for EVA Mission Planning: Integrating Physical Models, Domain Knowledge, and Agentic RAG to Provide Explainable LLM-Based Decision Support. In Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025). Open Access Series in Informatics (OASIcs), Volume 130, pp. 6:1-6:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{li_et_al:OASIcs.SpaceCHI.2025.6,
  author =	{Li, Kaisheng and Whittle, Richard S.},
  title =	{{Toward an Earth-Independent System for EVA Mission Planning: Integrating Physical Models, Domain Knowledge, and Agentic RAG to Provide Explainable LLM-Based Decision Support}},
  booktitle =	{Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)},
  pages =	{6:1--6:17},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-384-3},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{130},
  editor =	{Bensch, Leonie and Nilsson, Tommy and Nisser, Martin and Pataranutaporn, Pat and Schmidt, Albrecht and Sumini, Valentina},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SpaceCHI.2025.6},
  URN =		{urn:nbn:de:0030-drops-239967},
  doi =		{10.4230/OASIcs.SpaceCHI.2025.6},
  annote =	{Keywords: Human-AI Interaction for Space Exploration, Extravehicular Activities, Cognitive load and Human Performance Issues, Human Systems Exploration, Lunar Exploration, LLM}
}
Document
A Dichotomy Result for Cyclic-Order Traversing Games

Authors: Yen-Ting Chen, Meng-Tsung Tsai, and Shi-Chun Tsai

Published in: LIPIcs, Volume 123, 29th International Symposium on Algorithms and Computation (ISAAC 2018)


Abstract
Traversing game is a two-person game played on a connected undirected simple graph with a source node and a destination node. A pebble is placed on the source node initially and then moves autonomously according to some rules. Alice is the player who wants to set up rules for each node to determine where to forward the pebble while the pebble reaches the node, so that the pebble can reach the destination node. Bob is the second player who tries to deter Alice's effort by removing edges. Given access to Alice's rules, Bob can remove as many edges as he likes, while retaining the source and destination nodes connected. Under the guide of Alice's rules, if the pebble arrives at the destination node, then we say Alice wins the traversing game; otherwise the pebble enters an endless loop without passing through the destination node, then Bob wins. We assume that Alice and Bob both play optimally. We study the problem: When will Alice have a winning strategy? This actually models a routing recovery problem in Software Defined Networking in which some links may be broken. In this paper, we prove a dichotomy result for certain traversing games, called cyclic-order traversing games. We also give a linear-time algorithm to find the corresponding winning strategy, if one exists.

Cite as

Yen-Ting Chen, Meng-Tsung Tsai, and Shi-Chun Tsai. A Dichotomy Result for Cyclic-Order Traversing Games. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 29:1-29:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ISAAC.2018.29,
  author =	{Chen, Yen-Ting and Tsai, Meng-Tsung and Tsai, Shi-Chun},
  title =	{{A Dichotomy Result for Cyclic-Order Traversing Games}},
  booktitle =	{29th International Symposium on Algorithms and Computation (ISAAC 2018)},
  pages =	{29:1--29:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-094-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{123},
  editor =	{Hsu, Wen-Lian and Lee, Der-Tsai and Liao, Chung-Shou},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2018.29},
  URN =		{urn:nbn:de:0030-drops-99775},
  doi =		{10.4230/LIPIcs.ISAAC.2018.29},
  annote =	{Keywords: st-planar graphs, biconnectivity, fault-tolerant routing algorithms, software defined network}
}
  • Refine by Type
  • 3 Document/PDF
  • 2 Document/HTML

  • Refine by Publication Year
  • 2 2025
  • 1 2018

  • Refine by Author
  • 1 Chen, Yen-Ting
  • 1 Li, Kaisheng
  • 1 Rizzi, Romeo
  • 1 Sena, Francisco
  • 1 Tomescu, Alexandru I.
  • Show More...

  • Refine by Series/Journal
  • 2 LIPIcs
  • 1 OASIcs

  • Refine by Classification
  • 1 Applied computing → Sequencing and genotyping technologies
  • 1 Human-centered computing → Interaction design process and methods
  • 1 Human-centered computing → Interactive systems and tools
  • 1 Mathematics of computing → Graph theory
  • 1 Networks → Network reliability
  • Show More...

  • Refine by Keyword
  • 1 Cognitive load and Human Performance Issues
  • 1 Extravehicular Activities
  • 1 Human Systems Exploration
  • 1 Human-AI Interaction for Space Exploration
  • 1 LLM
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail