3 Search Results for "Condurache, Rodica"


Document
The Non-Cooperative Rational Synthesis Problem for SPEs and ω-Regular Objectives

Authors: Véronique Bruyère, Jean-François Raskin, Alexis Reynouard, and Marie Van Den Bogaard

Published in: LIPIcs, Volume 348, 36th International Conference on Concurrency Theory (CONCUR 2025)


Abstract
This paper studies the rational synthesis problem for multi-player games played on graphs when rational players are following subgame perfect equilibria. In these games, one player, the system, declares his strategy upfront, and the other players, composing the environment, then rationally respond by playing strategies forming a subgame perfect equilibrium. We study the complexity of the rational synthesis problem when the players have ω-regular objectives encoded as parity objectives. Our algorithm is based on an encoding into a three-player game with imperfect information, showing that the problem is in 2ExpTime. When the number of environment players is fixed, the problem is in ExpTime and is NP- and coNP-hard. Moreover, for a fixed number of players and reachability objectives, we get a polynomial algorithm.

Cite as

Véronique Bruyère, Jean-François Raskin, Alexis Reynouard, and Marie Van Den Bogaard. The Non-Cooperative Rational Synthesis Problem for SPEs and ω-Regular Objectives. In 36th International Conference on Concurrency Theory (CONCUR 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 348, pp. 12:1-12:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bruyere_et_al:LIPIcs.CONCUR.2025.12,
  author =	{Bruy\`{e}re, V\'{e}ronique and Raskin, Jean-Fran\c{c}ois and Reynouard, Alexis and Van Den Bogaard, Marie},
  title =	{{The Non-Cooperative Rational Synthesis Problem for SPEs and \omega-Regular Objectives}},
  booktitle =	{36th International Conference on Concurrency Theory (CONCUR 2025)},
  pages =	{12:1--12:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-389-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{348},
  editor =	{Bouyer, Patricia and van de Pol, Jaco},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2025.12},
  URN =		{urn:nbn:de:0030-drops-239622},
  doi =		{10.4230/LIPIcs.CONCUR.2025.12},
  annote =	{Keywords: non-zero-sum games, subgame perfect equilibria, rational synthesis}
}
Document
The Complexity of Rational Synthesis for Concurrent Games

Authors: Rodica Condurache, Youssouf Oualhadj, and Nicolas Troquard

Published in: LIPIcs, Volume 118, 29th International Conference on Concurrency Theory (CONCUR 2018)


Abstract
In this paper, we investigate the rational synthesis problem for concurrent game structures for a variety of objectives ranging from reachability to Muller condition. We propose a new algorithm that establishes the decidability of the non cooperative rational synthesis problem that relies solely on game theoretic techniques as opposed to previous approaches that are logic based. Given an instance of the rational synthesis problem, we construct a zero-sum turn-based game that can be adapted to each one of the class of objectives. We obtain new complexity results. In particular, we show that in the cases of reachability, safety, Büchi, and co-Büchi objectives the problem is in PSpace, providing a tight upper-bound to the PSpace-hardness already established for turn-based games. In the case of Muller objective the problem is in ExpTime. We also obtain positive results when we assume a fixed number of agents, in which case the problem falls into PTime for reachability, safety, Büchi, and co-Büchi objectives.

Cite as

Rodica Condurache, Youssouf Oualhadj, and Nicolas Troquard. The Complexity of Rational Synthesis for Concurrent Games. In 29th International Conference on Concurrency Theory (CONCUR 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 118, pp. 38:1-38:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{condurache_et_al:LIPIcs.CONCUR.2018.38,
  author =	{Condurache, Rodica and Oualhadj, Youssouf and Troquard, Nicolas},
  title =	{{The Complexity of Rational Synthesis for Concurrent Games}},
  booktitle =	{29th International Conference on Concurrency Theory (CONCUR 2018)},
  pages =	{38:1--38:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-087-3},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{118},
  editor =	{Schewe, Sven and Zhang, Lijun},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2018.38},
  URN =		{urn:nbn:de:0030-drops-95766},
  doi =		{10.4230/LIPIcs.CONCUR.2018.38},
  annote =	{Keywords: Synthesis, concurrent games, Nash equilibria}
}
Document
The Complexity of Rational Synthesis

Authors: Rodica Condurache, Emmanuel Filiot, Raffaella Gentilini, and Jean-François Raskin

Published in: LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)


Abstract
We study the computational complexity of the cooperative and non-cooperative rational synthesis problems, as introduced by Kupferman, Vardi and co-authors. We provide tight results for most of the classical omega-regular objectives, and show how to solve those problems optimally.

Cite as

Rodica Condurache, Emmanuel Filiot, Raffaella Gentilini, and Jean-François Raskin. The Complexity of Rational Synthesis. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 121:1-121:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{condurache_et_al:LIPIcs.ICALP.2016.121,
  author =	{Condurache, Rodica and Filiot, Emmanuel and Gentilini, Raffaella and Raskin, Jean-Fran\c{c}ois},
  title =	{{The Complexity of Rational Synthesis}},
  booktitle =	{43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
  pages =	{121:1--121:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-013-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{55},
  editor =	{Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.121},
  URN =		{urn:nbn:de:0030-drops-62565},
  doi =		{10.4230/LIPIcs.ICALP.2016.121},
  annote =	{Keywords: Non-zero sum games, reactive synthesis, omega-regular objectives}
}
  • Refine by Type
  • 3 Document/PDF
  • 1 Document/HTML

  • Refine by Publication Year
  • 1 2025
  • 1 2018
  • 1 2016

  • Refine by Author
  • 2 Condurache, Rodica
  • 2 Raskin, Jean-François
  • 1 Bruyère, Véronique
  • 1 Filiot, Emmanuel
  • 1 Gentilini, Raffaella
  • Show More...

  • Refine by Series/Journal
  • 3 LIPIcs

  • Refine by Classification
  • 1 Theory of computation
  • 1 Theory of computation → Algorithmic game theory
  • 1 Theory of computation → Solution concepts in game theory

  • Refine by Keyword
  • 1 Nash equilibria
  • 1 Non-zero sum games
  • 1 Synthesis
  • 1 concurrent games
  • 1 non-zero-sum games
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail