2 Search Results for "D'Angelo, Anthony"


Document
On Geodesic Disks Enclosing Many Points

Authors: Prosenjit Bose, Guillermo Esteban, David Orden, Rodrigo I. Silveira, and Tyler Tuttle

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
Let Π(n) be the largest number such that for every set S of n points in a polygon P, there always exist two points x, y ∈ S, where every geodesic disk containing x and y contains Π(n) points of S. We establish upper and lower bounds for Π(n), and show that ⌈n/5⌉ +1 ≤ Π(n) ≤ ⌈n/4⌉ +1. We also show that there always exist two points x, y ∈ S such that every geodesic disk with x and y on its boundary contains at least 16/665(n-2) ≈ ⌈(n-2)/41.6⌉ points both inside and outside the disk. For the special case where the points of S are restricted to be the vertices of a geodesically convex polygon we give a tight bound of ⌈n/3⌉ + 1. We provide the same tight bound when we only consider geodesic disks having x and y as diametral endpoints. Finally, we give a lower bound of ⌈(n-2)/36⌉+2 for the two-colored version of the problem.

Cite as

Prosenjit Bose, Guillermo Esteban, David Orden, Rodrigo I. Silveira, and Tyler Tuttle. On Geodesic Disks Enclosing Many Points. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 10:1-10:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bose_et_al:LIPIcs.WADS.2025.10,
  author =	{Bose, Prosenjit and Esteban, Guillermo and Orden, David and Silveira, Rodrigo I. and Tuttle, Tyler},
  title =	{{On Geodesic Disks Enclosing Many Points}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{10:1--10:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.10},
  URN =		{urn:nbn:de:0030-drops-242414},
  doi =		{10.4230/LIPIcs.WADS.2025.10},
  annote =	{Keywords: Enclosing disks, Geodesic disks, Bichromatic}
}
Document
On Planar Greedy Drawings of 3-Connected Planar Graphs

Authors: Giordano Da Lozzo, Anthony D'Angelo, and Fabrizio Frati

Published in: LIPIcs, Volume 77, 33rd International Symposium on Computational Geometry (SoCG 2017)


Abstract
A graph drawing is greedy if, for every ordered pair of vertices (x,y), there is a path from x to y such that the Euclidean distance to y decreases monotonically at every vertex of the path. Greedy drawings support a simple geometric routing scheme, in which any node that has to send a packet to a destination "greedily" forwards the packet to any neighbor that is closer to the destination than itself, according to the Euclidean distance in the drawing. In a greedy drawing such a neighbor always exists and hence this routing scheme is guaranteed to succeed. In 2004 Papadimitriou and Ratajczak stated two conjectures related to greedy drawings. The greedy embedding conjecture states that every 3-connected planar graph admits a greedy drawing. The convex greedy embedding conjecture asserts that every 3-connected planar graph admits a planar greedy drawing in which the faces are delimited by convex polygons. In 2008 the greedy embedding conjecture was settled in the positive by Leighton and Moitra. In this paper we prove that every 3-connected planar graph admits a planar greedy drawing. Apart from being a strengthening of Leighton and Moitra's result, this theorem constitutes a natural intermediate step towards a proof of the convex greedy embedding conjecture.

Cite as

Giordano Da Lozzo, Anthony D'Angelo, and Fabrizio Frati. On Planar Greedy Drawings of 3-Connected Planar Graphs. In 33rd International Symposium on Computational Geometry (SoCG 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 77, pp. 33:1-33:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{dalozzo_et_al:LIPIcs.SoCG.2017.33,
  author =	{Da Lozzo, Giordano and D'Angelo, Anthony and Frati, Fabrizio},
  title =	{{On Planar Greedy Drawings of 3-Connected Planar Graphs}},
  booktitle =	{33rd International Symposium on Computational Geometry (SoCG 2017)},
  pages =	{33:1--33:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-038-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{77},
  editor =	{Aronov, Boris and Katz, Matthew J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2017.33},
  URN =		{urn:nbn:de:0030-drops-72095},
  doi =		{10.4230/LIPIcs.SoCG.2017.33},
  annote =	{Keywords: Greedy drawings, 3-connectivity, planar graphs, convex drawings}
}
  • Refine by Type
  • 2 Document/PDF
  • 1 Document/HTML

  • Refine by Publication Year
  • 1 2025
  • 1 2017

  • Refine by Author
  • 1 Bose, Prosenjit
  • 1 D'Angelo, Anthony
  • 1 Da Lozzo, Giordano
  • 1 Esteban, Guillermo
  • 1 Frati, Fabrizio
  • Show More...

  • Refine by Series/Journal
  • 2 LIPIcs

  • Refine by Classification
  • 1 Theory of computation → Computational geometry

  • Refine by Keyword
  • 1 3-connectivity
  • 1 Bichromatic
  • 1 Enclosing disks
  • 1 Geodesic disks
  • 1 Greedy drawings
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail