3 Search Results for "Liu, Sixue"


Document
Track A: Algorithms, Complexity and Games
Algorithms for the Diverse-k-SAT Problem: The Geometry of Satisfying Assignments

Authors: Per Austrin, Ioana O. Bercea, Mayank Goswami, Nutan Limaye, and Adarsh Srinivasan

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
Given a k-CNF formula and an integer s ≥ 2, we study algorithms that obtain s solutions to the formula that are as dispersed as possible. For s = 2, this problem of computing the diameter of a k-CNF formula was initiated by Creszenzi and Rossi, who showed strong hardness results even for k = 2. The current best upper bound [Angelsmark and Thapper '04] goes to 4ⁿ as k → ∞. As our first result, we show that this quadratic blow up is not necessary by utilizing the Fast-Fourier transform (FFT) to give a O^*(2ⁿ) time exact algorithm for computing the diameter of any k-CNF formula. For s > 2, the problem was raised in the SAT community (Nadel '11) and several heuristics have been proposed for it, but no algorithms with theoretical guarantees are known. We give exact algorithms using FFT and clique-finding that run in O^*(2^{(s-1)n}) and O^*(s² |Ω_{𝐅}|^{ω ⌈ s/3 ⌉}) respectively, where |Ω_{𝐅}| is the size of the solutions space of the formula 𝐅 and ω is the matrix multiplication exponent. However, current SAT algorithms for finding one solution run in time O^*(2^{ε_{k}n}) for ε_{k} ≈ 1-Θ(1/k), which is much faster than all above run times. As our main result, we analyze two popular SAT algorithms - PPZ (Paturi, Pudlák, Zane '97) and Schöning’s ('02) algorithms, and show that in time poly(s)O^*(2^{ε_{k}n}), they can be used to approximate diameter as well as the dispersion (s > 2) problem. While we need to modify Schöning’s original algorithm for technical reasons, we show that the PPZ algorithm, without any modification, samples solutions in a geometric sense. We believe this geometric sampling property of PPZ may be of independent interest. Finally, we focus on diverse solutions to NP-complete optimization problems, and give bi-approximations running in time poly(s)O^*(2^{ε n}) with ε < 1 for several problems such as Maximum Independent Set, Minimum Vertex Cover, Minimum Hitting Set, Feedback Vertex Set, Multicut on Trees and Interval Vertex Deletion. For all of these problems, all existing exact methods for finding optimal diverse solutions have a runtime with at least an exponential dependence on the number of solutions s. Our methods show that by relaxing to bi-approximations, this dependence on s can be made polynomial.

Cite as

Per Austrin, Ioana O. Bercea, Mayank Goswami, Nutan Limaye, and Adarsh Srinivasan. Algorithms for the Diverse-k-SAT Problem: The Geometry of Satisfying Assignments. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 14:1-14:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{austrin_et_al:LIPIcs.ICALP.2025.14,
  author =	{Austrin, Per and Bercea, Ioana O. and Goswami, Mayank and Limaye, Nutan and Srinivasan, Adarsh},
  title =	{{Algorithms for the Diverse-k-SAT Problem: The Geometry of Satisfying Assignments}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{14:1--14:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.14},
  URN =		{urn:nbn:de:0030-drops-233916},
  doi =		{10.4230/LIPIcs.ICALP.2025.14},
  annote =	{Keywords: Exponential time algorithms, Satisfiability, k-SAT, PPZ, Sch\"{o}ning, Dispersion, Diversity}
}
Document
Simple Concurrent Labeling Algorithms for Connected Components

Authors: Sixue Liu and Robert E. Tarjan

Published in: OASIcs, Volume 69, 2nd Symposium on Simplicity in Algorithms (SOSA 2019)


Abstract
We present new concurrent labeling algorithms for finding connected components, and we study their theoretical efficiency. Even though many such algorithms have been proposed and many experiments with them have been done, our algorithms are simpler. We obtain an O(lg n) step bound for two of our algorithms using a novel multi-round analysis. We conjecture that our other algorithms also take O(lg n) steps but are only able to prove an O(lg^2 n) bound. We also point out some gaps in previous analyses of similar algorithms. Our results show that even a basic problem like connected components still has secrets to reveal.

Cite as

Sixue Liu and Robert E. Tarjan. Simple Concurrent Labeling Algorithms for Connected Components. In 2nd Symposium on Simplicity in Algorithms (SOSA 2019). Open Access Series in Informatics (OASIcs), Volume 69, pp. 3:1-3:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{liu_et_al:OASIcs.SOSA.2019.3,
  author =	{Liu, Sixue and Tarjan, Robert E.},
  title =	{{Simple Concurrent Labeling Algorithms for Connected Components}},
  booktitle =	{2nd Symposium on Simplicity in Algorithms (SOSA 2019)},
  pages =	{3:1--3:20},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-099-6},
  ISSN =	{2190-6807},
  year =	{2019},
  volume =	{69},
  editor =	{Fineman, Jeremy T. and Mitzenmacher, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SOSA.2019.3},
  URN =		{urn:nbn:de:0030-drops-100292},
  doi =		{10.4230/OASIcs.SOSA.2019.3},
  annote =	{Keywords: Connected Components, Concurrent Algorithms}
}
Document
Chain, Generalization of Covering Code, and Deterministic Algorithm for k-SAT

Authors: Sixue Liu

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
We present the current fastest deterministic algorithm for k-SAT, improving the upper bound (2-2/k)^{n + o(n)} due to Moser and Scheder in STOC 2011. The algorithm combines a branching algorithm with the derandomized local search, whose analysis relies on a special sequence of clauses called chain, and a generalization of covering code based on linear programming. We also provide a more intelligent branching algorithm for 3-SAT to establish the upper bound 1.32793^n, improved from 1.3303^n.

Cite as

Sixue Liu. Chain, Generalization of Covering Code, and Deterministic Algorithm for k-SAT. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 88:1-88:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{liu:LIPIcs.ICALP.2018.88,
  author =	{Liu, Sixue},
  title =	{{Chain, Generalization of Covering Code, and Deterministic Algorithm for k-SAT}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{88:1--88:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.88},
  URN =		{urn:nbn:de:0030-drops-90925},
  doi =		{10.4230/LIPIcs.ICALP.2018.88},
  annote =	{Keywords: Satisfiability, derandomization, local search}
}
  • Refine by Type
  • 3 Document/PDF
  • 1 Document/HTML

  • Refine by Publication Year
  • 1 2025
  • 1 2019
  • 1 2018

  • Refine by Author
  • 2 Liu, Sixue
  • 1 Austrin, Per
  • 1 Bercea, Ioana O.
  • 1 Goswami, Mayank
  • 1 Limaye, Nutan
  • Show More...

  • Refine by Series/Journal
  • 2 LIPIcs
  • 1 OASIcs

  • Refine by Classification
  • 1 Mathematics of computing → Combinatorial algorithms
  • 1 Theory of computation → Design and analysis of algorithms

  • Refine by Keyword
  • 2 Satisfiability
  • 1 Concurrent Algorithms
  • 1 Connected Components
  • 1 Dispersion
  • 1 Diversity
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail