12 Search Results for "Mark, David M."


Document
Survey
Towards Representing Processes and Reasoning with Process Descriptions on the Web

Authors: Andreas Harth, Tobias Käfer, Anisa Rula, Jean-Paul Calbimonte, Eduard Kamburjan, and Martin Giese

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
We work towards a vocabulary to represent processes and temporal logic specifications as graph-structured data. Different fields use incompatible terminologies for describing essentially the same process-related concepts. In addition, processes can be represented from different perspectives and levels of abstraction: both state-centric and event-centric perspectives offer distinct insights into the underlying processes. In this work, we strive to unify the representation of processes and related concepts by leveraging the power of knowledge graphs. We survey approaches to representing processes and reasoning with process descriptions from different fields and provide a selection of scenarios to help inform the scope of a unified representation of processes. We focus on processes that can be executed and observed via web interfaces. We propose to provide a representation designed to combine state-centric and event-centric perspectives while incorporating temporal querying and reasoning capabilities on temporal logic specifications. A standardised vocabulary and representation for processes and temporal specifications would contribute towards bridging the gap between the terminologies from different fields and fostering the broader application of methods involving temporal logics, such as formal verification and program synthesis.

Cite as

Andreas Harth, Tobias Käfer, Anisa Rula, Jean-Paul Calbimonte, Eduard Kamburjan, and Martin Giese. Towards Representing Processes and Reasoning with Process Descriptions on the Web. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 1:1-1:32, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{harth_et_al:TGDK.2.1.1,
  author =	{Harth, Andreas and K\"{a}fer, Tobias and Rula, Anisa and Calbimonte, Jean-Paul and Kamburjan, Eduard and Giese, Martin},
  title =	{{Towards Representing Processes and Reasoning with Process Descriptions on the Web}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{1:1--1:32},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.1},
  URN =		{urn:nbn:de:0030-drops-198583},
  doi =		{10.4230/TGDK.2.1.1},
  annote =	{Keywords: Process modelling, Process ontology, Temporal logic, Web services}
}
Document
Position
Grounding Stream Reasoning Research

Authors: Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
In the last decade, there has been a growing interest in applying AI technologies to implement complex data analytics over data streams. To this end, researchers in various fields have been organising a yearly event called the "Stream Reasoning Workshop" to share perspectives, challenges, and experiences around this topic. In this paper, the previous organisers of the workshops and other community members provide a summary of the main research results that have been discussed during the first six editions of the event. These results can be categorised into four main research areas: The first is concerned with the technological challenges related to handling large data streams. The second area aims at adapting and extending existing semantic technologies to data streams. The third and fourth areas focus on how to implement reasoning techniques, either considering deductive or inductive techniques, to extract new and valuable knowledge from the data in the stream. This summary is written not only to provide a crystallisation of the field, but also to point out distinctive traits of the stream reasoning community. Moreover, it also provides a foundation for future research by enumerating a list of use cases and open challenges, to stimulate others to join this exciting research area.

Cite as

Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer. Grounding Stream Reasoning Research. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 2:1-2:47, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{bonte_et_al:TGDK.2.1.2,
  author =	{Bonte, Pieter and Calbimonte, Jean-Paul and de Leng, Daniel and Dell'Aglio, Daniele and Della Valle, Emanuele and Eiter, Thomas and Giannini, Federico and Heintz, Fredrik and Schekotihin, Konstantin and Le-Phuoc, Danh and Mileo, Alessandra and Schneider, Patrik and Tommasini, Riccardo and Urbani, Jacopo and Ziffer, Giacomo},
  title =	{{Grounding Stream Reasoning Research}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{2:1--2:47},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.2},
  URN =		{urn:nbn:de:0030-drops-198597},
  doi =		{10.4230/TGDK.2.1.2},
  annote =	{Keywords: Stream Reasoning, Stream Processing, RDF streams, Streaming Linked Data, Continuous query processing, Temporal Logics, High-performance computing, Databases}
}
Document
Survey
Semantic Web: Past, Present, and Future

Authors: Ansgar Scherp, Gerd Groener, Petr Škoda, Katja Hose, and Maria-Esther Vidal

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
Ever since the vision was formulated, the Semantic Web has inspired many generations of innovations. Semantic technologies have been used to share vast amounts of information on the Web, enhance them with semantics to give them meaning, and enable inference and reasoning on them. Throughout the years, semantic technologies, and in particular knowledge graphs, have been used in search engines, data integration, enterprise settings, and machine learning. In this paper, we recap the classical concepts and foundations of the Semantic Web as well as modern and recent concepts and applications, building upon these foundations. The classical topics we cover include knowledge representation, creating and validating knowledge on the Web, reasoning and linking, and distributed querying. We enhance this classical view of the so-called "Semantic Web Layer Cake" with an update of recent concepts that include provenance, security and trust, as well as a discussion of practical impacts from industry-led contributions. We conclude with an outlook on the future directions of the Semantic Web. This is a living document. If you like to contribute, please contact the first author and visit: https://github.com/ascherp/semantic-web-primer

Cite as

Ansgar Scherp, Gerd Groener, Petr Škoda, Katja Hose, and Maria-Esther Vidal. Semantic Web: Past, Present, and Future. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 3:1-3:37, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{scherp_et_al:TGDK.2.1.3,
  author =	{Scherp, Ansgar and Groener, Gerd and \v{S}koda, Petr and Hose, Katja and Vidal, Maria-Esther},
  title =	{{Semantic Web: Past, Present, and Future}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{3:1--3:37},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.3},
  URN =		{urn:nbn:de:0030-drops-198607},
  doi =		{10.4230/TGDK.2.1.3},
  annote =	{Keywords: Linked Open Data, Semantic Web Graphs, Knowledge Graphs}
}
Document
Position
Standardizing Knowledge Engineering Practices with a Reference Architecture

Authors: Bradley P. Allen and Filip Ilievski

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
Knowledge engineering is the process of creating and maintaining knowledge-producing systems. Throughout the history of computer science and AI, knowledge engineering workflows have been widely used given the importance of high-quality knowledge for reliable intelligent agents. Meanwhile, the scope of knowledge engineering, as apparent from its target tasks and use cases, has been shifting, together with its paradigms such as expert systems, semantic web, and language modeling. The intended use cases and supported user requirements between these paradigms have not been analyzed globally, as new paradigms often satisfy prior pain points while possibly introducing new ones. The recent abstraction of systemic patterns into a boxology provides an opening for aligning the requirements and use cases of knowledge engineering with the systems, components, and software that can satisfy them best, however, this direction has not been explored to date. This paper proposes a vision of harmonizing the best practices in the field of knowledge engineering by leveraging the software engineering methodology of creating reference architectures. We describe how a reference architecture can be iteratively designed and implemented to associate user needs with recurring systemic patterns, building on top of existing knowledge engineering workflows and boxologies. We provide a six-step roadmap that can enable the development of such an architecture, consisting of scope definition, selection of information sources, architectural analysis, synthesis of an architecture based on the information source analysis, evaluation through instantiation, and, ultimately, instantiation into a concrete software architecture. We provide an initial design and outcome of the definition of architectural scope, selection of information sources, and analysis. As the remaining steps of design, evaluation, and instantiation of the architecture are largely use-case specific, we provide a detailed description of their procedures and point to relevant examples. We expect that following through on this vision will lead to well-grounded reference architectures for knowledge engineering, will advance the ongoing initiatives of organizing the neurosymbolic knowledge engineering space, and will build new links to the software architectures and data science communities.

Cite as

Bradley P. Allen and Filip Ilievski. Standardizing Knowledge Engineering Practices with a Reference Architecture. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 5:1-5:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{allen_et_al:TGDK.2.1.5,
  author =	{Allen, Bradley P. and Ilievski, Filip},
  title =	{{Standardizing Knowledge Engineering Practices with a Reference Architecture}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{5:1--5:23},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.5},
  URN =		{urn:nbn:de:0030-drops-198623},
  doi =		{10.4230/TGDK.2.1.5},
  annote =	{Keywords: knowledge engineering, knowledge graphs, quality attributes, software architectures, sociotechnical systems}
}
Document
Beating the Folklore Algorithm for Dynamic Matching

Authors: Mohammad Roghani, Amin Saberi, and David Wajc

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
The maximum matching problem in dynamic graphs subject to edge updates (insertions and deletions) has received much attention over the last few years; a multitude of approximation/time tradeoffs were obtained, improving upon the folklore algorithm, which maintains a maximal (and hence 2-approximate) matching in O(n) worst-case update time in n-node graphs. We present the first deterministic algorithm which outperforms the folklore algorithm in terms of both approximation ratio and worst-case update time. Specifically, we give a (2-Ω(1))-approximate algorithm with O(m^{3/8}) = O(n^{3/4}) worst-case update time in n-node, m-edge graphs. For sufficiently small constant ε > 0, no deterministic (2+ε)-approximate algorithm with worst-case update time O(n^{0.99}) was known. Our second result is the first deterministic (2+ε)-approximate weighted matching algorithm with O_ε(1)⋅ O(∜{m}) = O_ε(1)⋅ O(√n) worst-case update time. Neither of our results were previously known to be achievable by a randomized algorithm against an adaptive adversary. Our main technical contributions are threefold: first, we characterize the tight cases for kernels, which are the well-studied matching sparsifiers underlying much of the (2+ε)-approximate dynamic matching literature. This characterization, together with multiple ideas - old and new - underlies our result for breaking the approximation barrier of 2. Our second technical contribution is the first example of a dynamic matching algorithm whose running time is improved due to improving the recourse of other dynamic matching algorithms. Finally, we show how to use dynamic bipartite matching algorithms as black-box subroutines for dynamic matching in general graphs without incurring the natural 3/2 factor in the approximation ratio which such approaches naturally incur (reminiscent of the integrality gap of the fractional matching polytope in general graphs).

Cite as

Mohammad Roghani, Amin Saberi, and David Wajc. Beating the Folklore Algorithm for Dynamic Matching. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 111:1-111:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{roghani_et_al:LIPIcs.ITCS.2022.111,
  author =	{Roghani, Mohammad and Saberi, Amin and Wajc, David},
  title =	{{Beating the Folklore Algorithm for Dynamic Matching}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{111:1--111:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.111},
  URN =		{urn:nbn:de:0030-drops-157077},
  doi =		{10.4230/LIPIcs.ITCS.2022.111},
  annote =	{Keywords: dynamic matching, dynamic graph algorithms, sublinear algorithms}
}
Document
Maximum-Weight Matching in Sliding Windows and Beyond

Authors: Leyla Biabani, Mark de Berg, and Morteza Monemizadeh

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
We study the maximum-weight matching problem in the sliding-window model. In this model, we are given an adversarially ordered stream of edges of an underlying edge-weighted graph G(V,E), and a parameter L specifying the window size, and we want to maintain an approximation of the maximum-weight matching of the current graph G(t); here G(t) is defined as the subgraph of G consisting of the edges that arrived during the time interval [max(t-L,1),t], where t is the current time. The goal is to do this with Õ(n) space, where n is the number of vertices of G. We present a deterministic (3.5+ε)-approximation algorithm for this problem, thus significantly improving the (6+ε)-approximation algorithm due to Crouch and Stubbs [Michael S. Crouch and Daniel M. Stubbs, 2014]. We also present a generic machinery for approximating subadditve functions in the sliding-window model. A function f is called subadditive if for every disjoint substreams A, B of a stream S it holds that f(AB) ⩽ f(A) + f(B), where AB denotes the concatenation of A and B. We show that given an α-approximation algorithm for a subadditive function f in the insertion-only model we can maintain a (2α+ε)-approximation of f in the sliding-window model. This improves upon recent result Krauthgamer and Reitblat [Robert Krauthgamer and David Reitblat, 2019], who obtained a (2α²+ε)-approximation.

Cite as

Leyla Biabani, Mark de Berg, and Morteza Monemizadeh. Maximum-Weight Matching in Sliding Windows and Beyond. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 73:1-73:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{biabani_et_al:LIPIcs.ISAAC.2021.73,
  author =	{Biabani, Leyla and de Berg, Mark and Monemizadeh, Morteza},
  title =	{{Maximum-Weight Matching in Sliding Windows and Beyond}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{73:1--73:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.73},
  URN =		{urn:nbn:de:0030-drops-155061},
  doi =		{10.4230/LIPIcs.ISAAC.2021.73},
  annote =	{Keywords: maximum-weight matching, sliding-window model, approximation algorithm, and subadditve functions}
}
Document
Short Paper
The Landform Reference Ontology (LFRO): A Foundation for Exploring Linguistic and Geospatial Conceptualization of Landforms (Short Paper)

Authors: Gaurav Sinha, Samantha T. Arundel, Torsten Hahmann, E. Lynn Usery, Kathleen Stewart, and David M. Mark

Published in: LIPIcs, Volume 114, 10th International Conference on Geographic Information Science (GIScience 2018)


Abstract
The landform reference ontology (LFRO) formalizes ontological distinctions underlying naïve geographic cognition and reasoning about landforms. The LFRO taxonomy is currently based only on form-based distinctions. In this significantly revised version, several new categories have been added to explicate ontological distinctions related to material-spatial dependence and physical support. Nuances of common natural language landform terms and implications for their mapping are discussed.

Cite as

Gaurav Sinha, Samantha T. Arundel, Torsten Hahmann, E. Lynn Usery, Kathleen Stewart, and David M. Mark. The Landform Reference Ontology (LFRO): A Foundation for Exploring Linguistic and Geospatial Conceptualization of Landforms (Short Paper). In 10th International Conference on Geographic Information Science (GIScience 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 114, pp. 59:1-59:7, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{sinha_et_al:LIPIcs.GISCIENCE.2018.59,
  author =	{Sinha, Gaurav and Arundel, Samantha T. and Hahmann, Torsten and Usery, E. Lynn and Stewart, Kathleen and Mark, David M.},
  title =	{{The Landform Reference Ontology (LFRO): A Foundation for Exploring Linguistic and Geospatial Conceptualization of Landforms}},
  booktitle =	{10th International Conference on Geographic Information Science (GIScience 2018)},
  pages =	{59:1--59:7},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-083-5},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{114},
  editor =	{Winter, Stephan and Griffin, Amy and Sester, Monika},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GISCIENCE.2018.59},
  URN =		{urn:nbn:de:0030-drops-93873},
  doi =		{10.4230/LIPIcs.GISCIENCE.2018.59},
  annote =	{Keywords: landform, reference ontology, terrain reasoning, dependence, support}
}
Document
Slow Convergence of Ising and Spin Glass Models with Well-Separated Frustrated Vertices

Authors: David Gillman and Dana Randall

Published in: LIPIcs, Volume 110, 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018)


Abstract
Many physical models undergo phase transitions as some parameter of the system is varied. This phenomenon has bearing on the convergence times for local Markov chains walking among the configurations of the physical system. One of the most basic examples of this phenomenon is the ferromagnetic Ising model on an n x n square lattice region Lambda with mixed boundary conditions. For this spin system, if we fix the spins on the top and bottom sides of the square to be + and the left and right sides to be -, a standard Peierls argument based on energy shows that below some critical temperature t_c, any local Markov chain M requires time exponential in n to mix. Spin glasses are magnetic alloys that generalize the Ising model by specifying the strength of nearest neighbor interactions on the lattice, including whether they are ferromagnetic or antiferromagnetic. Whenever a face of the lattice is bounded by an odd number of edges with ferromagnetic interactions, the face is considered frustrated because the local competing objectives cannot be simultaneously satisfied. We consider spin glasses with exactly four well-separated frustrated faces that are symmetric around the center of the lattice region under 90 degree rotations. We show that local Markov chains require exponential time for all spin glasses in this class. This class includes the ferromagnetic Ising model with mixed boundary conditions described above, where the frustrated faces are on the boundary. The standard Peierls argument breaks down when the frustrated faces are on the interior of Lambda and yields weaker results when they are on the boundary of Lambda but not near the corners. We show that there is a universal temperature T below which M will be slow for all spin glasses with four well-separated frustrated faces. Our argument shows that there is an exponentially small cut indicated by the free energy, carefully exploiting both entropy and energy to establish a small bottleneck in the state space to establish slow mixing.

Cite as

David Gillman and Dana Randall. Slow Convergence of Ising and Spin Glass Models with Well-Separated Frustrated Vertices. In 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 110, pp. 24:1-24:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{gillman_et_al:LIPIcs.AofA.2018.24,
  author =	{Gillman, David and Randall, Dana},
  title =	{{Slow Convergence of Ising and Spin Glass Models with Well-Separated Frustrated Vertices}},
  booktitle =	{29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018)},
  pages =	{24:1--24:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-078-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{110},
  editor =	{Fill, James Allen and Ward, Mark Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2018.24},
  URN =		{urn:nbn:de:0030-drops-89170},
  doi =		{10.4230/LIPIcs.AofA.2018.24},
  annote =	{Keywords: Mixing time, spin glass, Ising model, mixed boundary conditions, frustration}
}
Document
Nearly Optimal Separation Between Partially and Fully Retroactive Data Structures

Authors: Lijie Chen, Erik D. Demaine, Yuzhou Gu, Virginia Vassilevska Williams, Yinzhan Xu, and Yuancheng Yu

Published in: LIPIcs, Volume 101, 16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018)


Abstract
Since the introduction of retroactive data structures at SODA 2004, a major unsolved problem has been to bound the gap between the best partially retroactive data structure (where changes can be made to the past, but only the present can be queried) and the best fully retroactive data structure (where the past can also be queried) for any problem. It was proved in 2004 that any partially retroactive data structure with operation time T_{op}(n,m) can be transformed into a fully retroactive data structure with operation time O(sqrt{m} * T_{op}(n,m)), where n is the size of the data structure and m is the number of operations in the timeline [Demaine et al., 2004]. But it has been open for 14 years whether such a gap is necessary. In this paper, we prove nearly matching upper and lower bounds on this gap for all n and m. We improve the upper bound for n << sqrt m by showing a new transformation with multiplicative overhead n log m. We then prove a lower bound of min {n log m, sqrt m}^{1-o(1)} assuming any of the following conjectures: - Conjecture I: Circuit SAT requires 2^{n - o(n)} time on n-input circuits of size 2^{o(n)}. This conjecture is far weaker than the well-believed SETH conjecture from complexity theory, which asserts that CNF SAT with n variables and O(n) clauses already requires 2^{n-o(n)} time. - Conjecture II: Online (min,+) product between an integer n x n matrix and n vectors requires n^{3 - o(1)} time. This conjecture is weaker than the APSP conjectures widely used in fine-grained complexity. - Conjecture III (3-SUM Conjecture): Given three sets A,B,C of integers, each of size n, deciding whether there exist a in A, b in B, c in C such that a + b + c = 0 requires n^{2 - o(1)} time. This 1995 conjecture [Anka Gajentaan and Mark H. Overmars, 1995] was the first conjecture in fine-grained complexity. Our lower bound construction illustrates an interesting power of fully retroactive queries: they can be used to quickly solve batched pair evaluation. We believe this technique can prove useful for other data structure lower bounds, especially dynamic ones.

Cite as

Lijie Chen, Erik D. Demaine, Yuzhou Gu, Virginia Vassilevska Williams, Yinzhan Xu, and Yuancheng Yu. Nearly Optimal Separation Between Partially and Fully Retroactive Data Structures. In 16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 101, pp. 33:1-33:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.SWAT.2018.33,
  author =	{Chen, Lijie and Demaine, Erik D. and Gu, Yuzhou and Williams, Virginia Vassilevska and Xu, Yinzhan and Yu, Yuancheng},
  title =	{{Nearly Optimal Separation Between Partially and Fully Retroactive Data Structures}},
  booktitle =	{16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018)},
  pages =	{33:1--33:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-068-2},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{101},
  editor =	{Eppstein, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2018.33},
  URN =		{urn:nbn:de:0030-drops-88593},
  doi =		{10.4230/LIPIcs.SWAT.2018.33},
  annote =	{Keywords: retroactive data structure, conditional lower bound}
}
Document
A Case for Deconstructing Hardware Transactional Memory Systems

Authors: Mark D. Hill, Derek Hower, Kevin E. Moore, Michael M. Swift, Haris Volos, and David A. Wood

Published in: Dagstuhl Seminar Proceedings, Volume 7361, Programming Models for Ubiquitous Parallelism (2008)


Abstract
Major hardware and software vendors are curious about transactional memory (TM), but are understandably cautious about committing to hardware changes. Our thesis is that deconstructing transactional memory into separate, interchangeable components facilitates TM adoption in two ways. First, it aids hardware TM refinement, allowing vendors to adopt TM earlier, knowing that they can more easily refine aspects later. Second, it enables the components to be applied to other uses, including reliability, security, performance, and correctness, providing value even if TM is not widely used. We develop some evidence for our thesis via experience with LogTM variants and preliminary case studies of scalable watchpoints and race recording for deterministic replay.

Cite as

Mark D. Hill, Derek Hower, Kevin E. Moore, Michael M. Swift, Haris Volos, and David A. Wood. A Case for Deconstructing Hardware Transactional Memory Systems. In Programming Models for Ubiquitous Parallelism. Dagstuhl Seminar Proceedings, Volume 7361, pp. 1-8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2008)


Copy BibTex To Clipboard

@InProceedings{hill_et_al:DagSemProc.07361.3,
  author =	{Hill, Mark D. and Hower, Derek and Moore, Kevin E. and Swift, Michael M. and Volos, Haris and Wood, David A.},
  title =	{{A Case for Deconstructing Hardware Transactional Memory Systems}},
  booktitle =	{Programming Models for Ubiquitous Parallelism},
  pages =	{1--8},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2008},
  volume =	{7361},
  editor =	{Albert Cohen and Mar{\'\i}a J. Garzar\'{a}n and Christian Lengauer and Samuel P. Midkiff},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.07361.3},
  URN =		{urn:nbn:de:0030-drops-13759},
  doi =		{10.4230/DagSemProc.07361.3},
  annote =	{Keywords: Hardware transactional memory}
}
Document
07101 Working Group Report – Performance Measures Other Than Time

Authors: Lucia Cloth, Pepijn Crouzen, Matthias Fruth, Tingting Han, David N. Jansen, Mark Kattenbelt, Gerard J. M. Smit, and Lijun Zhang

Published in: Dagstuhl Seminar Proceedings, Volume 7101, Quantitative Aspects of Embedded Systems (2007)


Abstract
This presentation shows a few possible performance measures that might be interesting and possible evaluation methods.

Cite as

Lucia Cloth, Pepijn Crouzen, Matthias Fruth, Tingting Han, David N. Jansen, Mark Kattenbelt, Gerard J. M. Smit, and Lijun Zhang. 07101 Working Group Report – Performance Measures Other Than Time. In Quantitative Aspects of Embedded Systems. Dagstuhl Seminar Proceedings, Volume 7101, pp. 1-2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2007)


Copy BibTex To Clipboard

@InProceedings{cloth_et_al:DagSemProc.07101.3,
  author =	{Cloth, Lucia and Crouzen, Pepijn and Fruth, Matthias and Han, Tingting and Jansen, David N. and Kattenbelt, Mark and Smit, Gerard J. M. and Zhang, Lijun},
  title =	{{07101 Working Group Report – Performance Measures Other Than Time}},
  booktitle =	{Quantitative Aspects of Embedded Systems},
  pages =	{1--2},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2007},
  volume =	{7101},
  editor =	{Boudewijn Haverkort and Joost-Pieter Katoen and Lothar Thiele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.07101.3},
  URN =		{urn:nbn:de:0030-drops-11396},
  doi =		{10.4230/DagSemProc.07101.3},
  annote =	{Keywords: }
}
Document
Managing power amongst a group of networked embedded fpgas using dynamic reconfiguration and task migration

Authors: David Kearney and Mark Jasiunas

Published in: Dagstuhl Seminar Proceedings, Volume 6141, Dynamically Reconfigurable Architectures (2006)


Abstract
Small unpiloted aircraft (UAVs) each have limited power budgets. If a group (swarm) of small UAVs is organized to perform a common task such as geo-location then it is possible to share the total power across the group by introducing task mobility inside the group supported by an ad hoc wireless network (where the communication encoding/decodeing is also done on fpgas). In this presentation I will describe research into the construction of a distributed operating system where partial dynamic reconfiguration and network mobility are combined so that fpga tasks can be moved to make the best use of the total power available in a swarm of UAVs.

Cite as

David Kearney and Mark Jasiunas. Managing power amongst a group of networked embedded fpgas using dynamic reconfiguration and task migration. In Dynamically Reconfigurable Architectures. Dagstuhl Seminar Proceedings, Volume 6141, pp. 1-9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)


Copy BibTex To Clipboard

@InProceedings{kearney_et_al:DagSemProc.06141.10,
  author =	{Kearney, David and Jasiunas, Mark},
  title =	{{Managing power amongst a group of networked embedded fpgas using dynamic reconfiguration and task migration}},
  booktitle =	{Dynamically Reconfigurable Architectures},
  pages =	{1--9},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2006},
  volume =	{6141},
  editor =	{Peter M. Athanas and J\"{u}rgen Becker and Gordon Brebner and J\"{u}rgen Teich},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.06141.10},
  URN =		{urn:nbn:de:0030-drops-7408},
  doi =		{10.4230/DagSemProc.06141.10},
  annote =	{Keywords: Dynamic reconfiguration unpiloted aircraft operating system}
}
  • Refine by Author
  • 2 Calbimonte, Jean-Paul
  • 1 Allen, Bradley P.
  • 1 Arundel, Samantha T.
  • 1 Biabani, Leyla
  • 1 Bonte, Pieter
  • Show More...

  • Refine by Classification
  • 3 Information systems → Semantic web description languages
  • 2 Computing methodologies → Knowledge representation and reasoning
  • 2 Computing methodologies → Ontology engineering
  • 2 Computing methodologies → Temporal reasoning
  • 1 Applied computing → Business process modeling
  • Show More...

  • Refine by Keyword
  • 1 Continuous query processing
  • 1 Databases
  • 1 Dynamic reconfiguration unpiloted aircraft operating system
  • 1 Hardware transactional memory
  • 1 High-performance computing
  • Show More...

  • Refine by Type
  • 12 document

  • Refine by Publication Year
  • 4 2024
  • 3 2018
  • 1 2006
  • 1 2007
  • 1 2008
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail