5 Search Results for "Prokopec, Aleksandar"


Document
A Lightweight Method for Generating Multi-Tier JIT Compilation Virtual Machine in a Meta-Tracing Compiler Framework

Authors: Yusuke Izawa, Hidehiko Masuhara, and Carl Friedrich Bolz-Tereick

Published in: LIPIcs, Volume 333, 39th European Conference on Object-Oriented Programming (ECOOP 2025)


Abstract
Meta-compiler frameworks, such as RPython and Graal/Truffle, generate high-performance virtual machines (VMs) from interpreter definitions. Although they generate VMs with high-quality just-in-time (JIT) compilers, they still lack an important feature that dedicated VMs (i.e., VMs that are developed for specific languages) have, namely multi-tier compilation. Multi-tier compilation uses light-weight compilers at early stages and highly optimizing compilers at later stages in order to balance between compilation overheads and code quality. We propose a novel approach to enabling multi-tier compilation in the VMs generated by a meta-compiler framework. Instead of extending the JIT compiler backend of the framework, our approach drives an existing (heavyweight) compiler backend in the framework to quickly generate unoptimized native code by merely embedding directives and compile-time operations into interpreter definitions. As a validation of the approach, we developed 2SOM, a Simple Object Machine with a two-tier JIT compiler based on RPython. 2SOM first applies the tier-1 threaded code generator that is generated by our proposed technique, then, to the loops that exceed a threshold, applies the tier-2 tracing JIT compiler that is generated by the original RPython framework. Our performance evaluation that runs a program with a realistic workload showed that 2SOM improved, when compared against an RPython-based VM, warm-up performance by 15%, with merely a 5% reduction in peak performance.

Cite as

Yusuke Izawa, Hidehiko Masuhara, and Carl Friedrich Bolz-Tereick. A Lightweight Method for Generating Multi-Tier JIT Compilation Virtual Machine in a Meta-Tracing Compiler Framework. In 39th European Conference on Object-Oriented Programming (ECOOP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 333, pp. 16:1-16:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{izawa_et_al:LIPIcs.ECOOP.2025.16,
  author =	{Izawa, Yusuke and Masuhara, Hidehiko and Bolz-Tereick, Carl Friedrich},
  title =	{{A Lightweight Method for Generating Multi-Tier JIT Compilation Virtual Machine in a Meta-Tracing Compiler Framework}},
  booktitle =	{39th European Conference on Object-Oriented Programming (ECOOP 2025)},
  pages =	{16:1--16:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-373-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{333},
  editor =	{Aldrich, Jonathan and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2025.16},
  URN =		{urn:nbn:de:0030-drops-233090},
  doi =		{10.4230/LIPIcs.ECOOP.2025.16},
  annote =	{Keywords: virtual machine, JIT compiler, multi-tier JIT compiler, meta-tracing JIT compiler, RPython}
}
Document
Profile-Guided Field Externalization in an Ahead-Of-Time Compiler

Authors: Sebastian Kloibhofer, Lukas Makor, Peter Hofer, David Leopoldseder, and Hanspeter Mössenböck

Published in: LIPIcs, Volume 333, 39th European Conference on Object-Oriented Programming (ECOOP 2025)


Abstract
Field externalization is a technique to reduce the footprint of objects by removing fields that most frequently contain zero or null. While researchers have developed ways to bring this optimization into the Java world, these have been limited to research compilers or virtual machines for embedded systems. In this work, we present a novel field externalization technique that uses information from static analysis and profiling to determine externalizable fields. During compilation, we remove those fields and define companion classes. These are used in case of non-default-value writes to the externalized fields. Our approach also correctly handles synchronization to prevent issues in multithreaded environments. We integrated our approach into the modern Java ahead-of-time compiler GraalVM Native Image. We conducted an evaluation on a diverse set of benchmarks that includes standard and microservice-based benchmarks. For standard benchmarks, our approach reduces the total allocated bytes by 2.76% and the maximum resident set size (max-RSS) by 2.55%. For microservice benchmarks, we achieved a reduction of 6.88% for normalized allocated bytes and 2.45% for max-RSS. We computed these improvements via the geometric mean. The median reductions are are 1.46% (alloc. bytes) and 0.22% (max-RSS) in standard benchmarks, as well as 3.63% (alloc. bytes) and 0.20% (max-RSS) in microservice benchmarks.

Cite as

Sebastian Kloibhofer, Lukas Makor, Peter Hofer, David Leopoldseder, and Hanspeter Mössenböck. Profile-Guided Field Externalization in an Ahead-Of-Time Compiler. In 39th European Conference on Object-Oriented Programming (ECOOP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 333, pp. 19:1-19:32, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{kloibhofer_et_al:LIPIcs.ECOOP.2025.19,
  author =	{Kloibhofer, Sebastian and Makor, Lukas and Hofer, Peter and Leopoldseder, David and M\"{o}ssenb\"{o}ck, Hanspeter},
  title =	{{Profile-Guided Field Externalization in an Ahead-Of-Time Compiler}},
  booktitle =	{39th European Conference on Object-Oriented Programming (ECOOP 2025)},
  pages =	{19:1--19:32},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-373-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{333},
  editor =	{Aldrich, Jonathan and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2025.19},
  URN =		{urn:nbn:de:0030-drops-233121},
  doi =		{10.4230/LIPIcs.ECOOP.2025.19},
  annote =	{Keywords: compilation, instrumentation, profiling, fields, externalization, memory footprint reduction, memory footprint optimization}
}
Document
Reusing Highly Optimized IR in Dynamic Compilation

Authors: Andrej Pečimúth, David Leopoldseder, and Petr Tůma

Published in: LIPIcs, Volume 333, 39th European Conference on Object-Oriented Programming (ECOOP 2025)


Abstract
Virtual machines (VMs) with dynamic compilers typically specialize compiled code to the state of the running VM instance and thus cannot reuse the code between multiple runs of the same application. The JIT compiler must recompile the same methods for each run of the application separately, which can prolong the application’s warmup time. We propose a technique to reduce compilation time by reusing a highly optimized intermediate representation (IR). We achieve this by tracing compiler-interface calls during compilation. The validity of the specializations in the IR is verified during a replay stage, and the replay also facilitates the relocation of runtime object references. The IR is stored on a compilation server, which can compile it to machine code and provide the code to local or remote VM instances. We implemented a compilation server with IR caching for GraalVM, a high-performance production-grade Java Virtual Machine (JVM). We present an evaluation based on four industry-standard benchmark suites. In each suite, our approach reduces compilation time by 23.6% to 36.8% and warmup time by 13.1% to 21.2% on average while preserving peak application performance.

Cite as

Andrej Pečimúth, David Leopoldseder, and Petr Tůma. Reusing Highly Optimized IR in Dynamic Compilation. In 39th European Conference on Object-Oriented Programming (ECOOP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 333, pp. 25:1-25:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{pecimuth_et_al:LIPIcs.ECOOP.2025.25,
  author =	{Pe\v{c}im\'{u}th, Andrej and Leopoldseder, David and T\r{u}ma, Petr},
  title =	{{Reusing Highly Optimized IR in Dynamic Compilation}},
  booktitle =	{39th European Conference on Object-Oriented Programming (ECOOP 2025)},
  pages =	{25:1--25:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-373-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{333},
  editor =	{Aldrich, Jonathan and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2025.25},
  URN =		{urn:nbn:de:0030-drops-233176},
  doi =		{10.4230/LIPIcs.ECOOP.2025.25},
  annote =	{Keywords: code reuse, compilation time, warmup, remote compilation, dynamic compilation, virtual machines}
}
Document
Taking a Closer Look: An Outlier-Driven Approach to Compilation-Time Optimization

Authors: Florian Huemer, David Leopoldseder, Aleksandar Prokopec, Raphael Mosaner, and Hanspeter Mössenböck

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Improving compilation time in optimizing compilers is challenging due to their large number of interconnected components. This includes compiler optimizations, compiler tiers, heuristics, and profiling information. Despite this complexity, research in compilation-time optimization is often guided by analyzing metrics of entire program runs, such as the total compilation time and overall memory footprint. This coarse-grained perspective hides relevant information, such as source program functions for which the compiler allocates a lot of memory or compiler optimizations with a high impact on the total compilation time. This leaves high-level metrics as the only reference point for driving optimization design. Consequently, compilation-time regressions in one program function that are obscured by improvements in other functions stay undetected, while the impacts of compiler changes on untouched parts of the compiler are mainly unknown. Furthermore, developers overlook long-standing compiler defects because their high-level metrics do not change over time. To address these limitations, we propose ICON, a new data-driven approach to compilation-time optimization that breaks up high-level metrics into individual source program functions, compiler optimizations, or even into individual instructions in the compiler source code. Our methodology enables an iterative in-depth compilation-time analysis, focusing on outliers to identify optimization opportunities. We show that outliers, both in terms of time spent in a particular compiler optimization, and in terms of individual compilations that take substantially longer, can reveal potential problems in the compiler implementation. We applied our approach to GraalVM and extracted data for multiple of its language runtimes. We analyzed the resulting data, present the first detailed look into the distribution of compilation time in the GraalVM compiler, a state-of-the-art multi-language compiler, and identified defects that led to regressions in overall compilation time or the compilation time of specific languages. We furthermore designed two optimizations based on the identified outliers that improve compilation time between 2.25% and 9.45%. We believe that our approach can guide compiler developers in finding usually overlooked optimization potential and defects, and focus future research efforts in making compilers more efficient.

Cite as

Florian Huemer, David Leopoldseder, Aleksandar Prokopec, Raphael Mosaner, and Hanspeter Mössenböck. Taking a Closer Look: An Outlier-Driven Approach to Compilation-Time Optimization. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 20:1-20:28, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{huemer_et_al:LIPIcs.ECOOP.2024.20,
  author =	{Huemer, Florian and Leopoldseder, David and Prokopec, Aleksandar and Mosaner, Raphael and M\"{o}ssenb\"{o}ck, Hanspeter},
  title =	{{Taking a Closer Look: An Outlier-Driven Approach to Compilation-Time Optimization}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{20:1--20:28},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.20},
  URN =		{urn:nbn:de:0030-drops-208693},
  doi =		{10.4230/LIPIcs.ECOOP.2024.20},
  annote =	{Keywords: Compilation time, outliers, dynamic languages, virtual machines, GraalVM, ICON}
}
Document
Theory and Practice of Coroutines with Snapshots

Authors: Aleksandar Prokopec and Fengyun Liu

Published in: LIPIcs, Volume 109, 32nd European Conference on Object-Oriented Programming (ECOOP 2018)


Abstract
While event-driven programming is a widespread model for asynchronous computing, its inherent control flow fragmentation makes event-driven programs notoriously difficult to understand and maintain. Coroutines are a general control flow construct that can eliminate control flow fragmentation. However, coroutines are still missing in many popular languages. This gap is partly caused by the difficulties of supporting suspendable computations in the language runtime. We introduce first-class, type-safe, stackful coroutines with snapshots, which unify many variants of suspendable computing. Our design relies solely on the static metaprogramming support of the host language, without modifying the language implementation or the runtime. We also develop a formal model for type-safe, stackful and delimited coroutines, and we prove the respective safety properties. We show that the model is sufficiently general to express iterators, single-assignment variables, async-await, actors, event streams, backtracking, symmetric coroutines and continuations. Performance evaluations reveal that the proposed metaprogramming-based approach has a decent performance, with workload-dependent overheads of 1.03-2.11 x compared to equivalent manually written code, and improvements of up to 6 x compared to other approaches.

Cite as

Aleksandar Prokopec and Fengyun Liu. Theory and Practice of Coroutines with Snapshots. In 32nd European Conference on Object-Oriented Programming (ECOOP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 109, pp. 3:1-3:32, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{prokopec_et_al:LIPIcs.ECOOP.2018.3,
  author =	{Prokopec, Aleksandar and Liu, Fengyun},
  title =	{{Theory and Practice of Coroutines with Snapshots}},
  booktitle =	{32nd European Conference on Object-Oriented Programming (ECOOP 2018)},
  pages =	{3:1--3:32},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-079-8},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{109},
  editor =	{Millstein, Todd},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2018.3},
  URN =		{urn:nbn:de:0030-drops-92087},
  doi =		{10.4230/LIPIcs.ECOOP.2018.3},
  annote =	{Keywords: coroutines, continuations, coroutine snapshots, asynchronous programming, inversion of control, event-driven programming}
}
  • Refine by Type
  • 5 Document/PDF
  • 3 Document/HTML

  • Refine by Publication Year
  • 3 2025
  • 1 2024
  • 1 2018

  • Refine by Author
  • 3 Leopoldseder, David
  • 2 Mössenböck, Hanspeter
  • 2 Prokopec, Aleksandar
  • 1 Bolz-Tereick, Carl Friedrich
  • 1 Hofer, Peter
  • Show More...

  • Refine by Series/Journal
  • 5 LIPIcs

  • Refine by Classification
  • 3 Software and its engineering → Just-in-time compilers
  • 2 Software and its engineering → Dynamic compilers
  • 1 General and reference → Measurement
  • 1 General and reference → Performance
  • 1 Software and its engineering → Classes and objects
  • Show More...

  • Refine by Keyword
  • 2 virtual machines
  • 1 Compilation time
  • 1 GraalVM
  • 1 ICON
  • 1 JIT compiler
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail