2 Search Results for "Rohm, Valentin"


Document
Temporal Dominating Set and Temporal Vertex Cover Under the Lense of Degree Restrictions

Authors: Anton Herrmann, Christian Komusiewicz, Nils Morawietz, and Frank Sommer

Published in: LIPIcs, Volume 330, 4th Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2025)


Abstract
We study the Temporal Dominating Set problem, in which one asks whether a temporal graph 𝒢 = (G₁,… , G_T) given as a sequence of snapshot graphs, over the same vertex set V, has a set S of temporal vertices of size at most k such that each vertex v of V is dominated by some w ∈ S in the snapshot that contains w. Additionally, we consider Temporal Partial Dominating Set, where one asks whether at least t (and not necessarily all) vertices of V can be dominated by S and a further generalization in which the solution may only contain a bounded number of temporal vertices from each snapshot. We analyze how the complexity of Temporal (Partial) Dominating Set is influenced by the maximum snapshot degree and the structure of the underlying graph, the graph with vertex set V and whose edge set is the union of all snapshot edge sets. For example, we obtain a complexity dichotomy for the maximum snapshot degree and we show that Temporal Partial Dominating Set is fixed-parameter tractable for tw+Δ, where tw and Δ denote the treewidth and the maximum degree of the underlying graph of 𝒢, respectively. We also show which of our results transfer to the well-studied Temporal Vertex Cover problem. For example, we show that Temporal Vertex Cover is also fixed-parameter tractable for tw+Δ which substantially extends the previously known polynomial-time algorithms for the case that the underlying graph is a path or cycle.

Cite as

Anton Herrmann, Christian Komusiewicz, Nils Morawietz, and Frank Sommer. Temporal Dominating Set and Temporal Vertex Cover Under the Lense of Degree Restrictions. In 4th Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 330, pp. 16:1-16:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{herrmann_et_al:LIPIcs.SAND.2025.16,
  author =	{Herrmann, Anton and Komusiewicz, Christian and Morawietz, Nils and Sommer, Frank},
  title =	{{Temporal Dominating Set and Temporal Vertex Cover Under the Lense of Degree Restrictions}},
  booktitle =	{4th Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2025)},
  pages =	{16:1--16:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-368-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{330},
  editor =	{Meeks, Kitty and Scheideler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAND.2025.16},
  URN =		{urn:nbn:de:0030-drops-230695},
  doi =		{10.4230/LIPIcs.SAND.2025.16},
  annote =	{Keywords: NP-hard problem, FPT-algorithm, Treewidth, Color coding}
}
Document
Multistage Vertex Cover

Authors: Till Fluschnik, Rolf Niedermeier, Valentin Rohm, and Philipp Zschoche

Published in: LIPIcs, Volume 148, 14th International Symposium on Parameterized and Exact Computation (IPEC 2019)


Abstract
Covering all edges of a graph by a small number of vertices, this is the NP-hard Vertex Cover problem, is among the most fundamental algorithmic tasks. Following a recent trend in studying dynamic and temporal graphs, we initiate the study of Multistage Vertex Cover. Herein, having a series of graphs with same vertex set but over time changing edge sets (known as temporal graph consisting of time layers), the goal is to find for each layer of the temporal graph a small vertex cover and to guarantee that the two vertex cover sets between two subsequent layers differ not too much (specified by a given parameter). We show that, different from classic Vertex Cover and some other dynamic or temporal variants of it, Multistage Vertex Cover is computationally hard even in fairly restricted settings. On the positive side, however, we also spot several fixed-parameter tractability results based on some of the most natural parameterizations.

Cite as

Till Fluschnik, Rolf Niedermeier, Valentin Rohm, and Philipp Zschoche. Multistage Vertex Cover. In 14th International Symposium on Parameterized and Exact Computation (IPEC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 148, pp. 14:1-14:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{fluschnik_et_al:LIPIcs.IPEC.2019.14,
  author =	{Fluschnik, Till and Niedermeier, Rolf and Rohm, Valentin and Zschoche, Philipp},
  title =	{{Multistage Vertex Cover}},
  booktitle =	{14th International Symposium on Parameterized and Exact Computation (IPEC 2019)},
  pages =	{14:1--14:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-129-0},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{148},
  editor =	{Jansen, Bart M. P. and Telle, Jan Arne},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2019.14},
  URN =		{urn:nbn:de:0030-drops-114753},
  doi =		{10.4230/LIPIcs.IPEC.2019.14},
  annote =	{Keywords: NP-hardness, dynamic graph problems, temporal graphs, time-evolving networks, W\lbrack1\rbrack-hardness, fixed-parameter tractability, kernelization}
}
  • Refine by Type
  • 2 Document/PDF
  • 1 Document/HTML

  • Refine by Publication Year
  • 1 2025
  • 1 2019

  • Refine by Author
  • 1 Fluschnik, Till
  • 1 Herrmann, Anton
  • 1 Komusiewicz, Christian
  • 1 Morawietz, Nils
  • 1 Niedermeier, Rolf
  • Show More...

  • Refine by Series/Journal
  • 2 LIPIcs

  • Refine by Classification
  • 2 Theory of computation → Parameterized complexity and exact algorithms
  • 1 Mathematics of computing → Graph algorithms
  • 1 Theory of computation → Graph algorithms analysis

  • Refine by Keyword
  • 1 Color coding
  • 1 FPT-algorithm
  • 1 NP-hard problem
  • 1 NP-hardness
  • 1 Treewidth
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail