2 Search Results for "Seeger, Bernhard"


Document
Buffered Partially-Persistent External-Memory Search Trees

Authors: Gerth Stølting Brodal, Casper Moldrup Rysgaard, and Rolf Svenning

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We present an optimal partially-persistent external-memory search tree with amortized I/O bounds matching those achieved by the non-persistent B^{ε}-tree by Brodal and Fagerberg [SODA 2003]. In a partially-persistent data structure, each update creates a new version. All past versions can be queried, but only the current version can be updated. Operations should be efficient with respect to the size N_v of the accessed version v. For any parameter 0 < ε < 1, our data structure supports insertions and deletions in amortized 𝒪(1/(ε B^{1 - ε}) log_B N_v) I/Os, where B is the external-memory block size. It also supports successor and range reporting queries in amortized 𝒪(1/ε log_B N_v + K/B) I/Os, where K is the number of keys reported. The space usage of the data structure is linear in the total number of updates. We make the standard and minimal assumption that the internal memory has size M ≥ 2B. The previous state-of-the-art external-memory partially-persistent search tree by Arge, Danner and Teh [JEA 2003] supports all operations in worst-case 𝒪(log_B N_v + K/B) I/Os, matching the bounds achieved by the classical B-tree by Bayer and McCreight [Acta Informatica 1972]. Our data structure successfully combines buffering updates with partial persistence. The I/O bounds can also be achieved in the worst-case sense, by slightly modifying our data structure and under the requirement that the memory size M = Ω(B^{1-ε} log₂(max_v N_v)). For updates, where the I/O bound is o(1), we assume that the I/Os are performed evenly spread out among the updates (by performing buffer-overflows incrementally). The worst-case result slightly improves the memory requirement over the previous ephemeral external-memory dictionary by Das, Iacono, and Nekrich (ISAAC 2022), who achieved matching worst-case I/O bounds but required M = Ω(B log_B N), where N is the size of the current dictionary.

Cite as

Gerth Stølting Brodal, Casper Moldrup Rysgaard, and Rolf Svenning. Buffered Partially-Persistent External-Memory Search Trees. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 82:1-82:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{brodal_et_al:LIPIcs.ESA.2025.82,
  author =	{Brodal, Gerth St{\o}lting and Rysgaard, Casper Moldrup and Svenning, Rolf},
  title =	{{Buffered Partially-Persistent External-Memory Search Trees}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{82:1--82:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.82},
  URN =		{urn:nbn:de:0030-drops-245507},
  doi =		{10.4230/LIPIcs.ESA.2025.82},
  annote =	{Keywords: B-tree, buffered updates, partial persistence, external memory}
}
Document
On the Complexity of Computing Time Series Medians Under the Move-Split-Merge Metric

Authors: Jana Holznigenkemper, Christian Komusiewicz, Nils Morawietz, and Bernhard Seeger

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
We initiate a study of the complexity of MSM-Median, the problem of computing a median of a set of k real-valued time series under the move-split-merge distance. This distance measure is based on three operations: moves, which may shift a data point in a time series; splits, which replace one data point in a time series by two consecutive data points of the same value; and merges, which replace two consecutive data points of equal value by a single data point of the same value. The cost of a move operation is the difference of the data point value before and after the operation, the cost of split and merge operations is defined via a given constant c. Our main results are as follows. First, we show that MSM-Median is NP-hard and W[1]-hard with respect to k for time series with at most three distinct values. Under the Exponential Time Hypothesis (ETH) our reduction implies that a previous dynamic programming algorithm with running time |I|^𝒪(k) [Holznigenkemper et al., Data Min. Knowl. Discov. '23] is essentially optimal. Here, |I| denotes the total input size. Second, we show that MSM-Median can be solved in 2^𝒪(d/c)⋅|I|^𝒪(1) time where d is the total distance of the median to the input time series.

Cite as

Jana Holznigenkemper, Christian Komusiewicz, Nils Morawietz, and Bernhard Seeger. On the Complexity of Computing Time Series Medians Under the Move-Split-Merge Metric. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 54:1-54:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{holznigenkemper_et_al:LIPIcs.MFCS.2023.54,
  author =	{Holznigenkemper, Jana and Komusiewicz, Christian and Morawietz, Nils and Seeger, Bernhard},
  title =	{{On the Complexity of Computing Time Series Medians Under the Move-Split-Merge Metric}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{54:1--54:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.54},
  URN =		{urn:nbn:de:0030-drops-185889},
  doi =		{10.4230/LIPIcs.MFCS.2023.54},
  annote =	{Keywords: Parameterized Complexity, Median String, Time Series, ETH}
}
  • Refine by Type
  • 2 Document/PDF
  • 1 Document/HTML

  • Refine by Publication Year
  • 1 2025
  • 1 2023

  • Refine by Author
  • 1 Brodal, Gerth Stølting
  • 1 Holznigenkemper, Jana
  • 1 Komusiewicz, Christian
  • 1 Morawietz, Nils
  • 1 Rysgaard, Casper Moldrup
  • Show More...

  • Refine by Series/Journal
  • 2 LIPIcs

  • Refine by Classification
  • 1 Mathematics of computing → Time series analysis
  • 1 Theory of computation → Data structures design and analysis

  • Refine by Keyword
  • 1 B-tree
  • 1 ETH
  • 1 Median String
  • 1 Parameterized Complexity
  • 1 Time Series
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail