License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SoCG.2016.59
URN: urn:nbn:de:0030-drops-59514
Go to the corresponding LIPIcs Volume Portal

Rok, Alexandre ; Smorodinsky, Shakhar

Weak 1/r-Nets for Moving Points

LIPIcs-SoCG-2016-59.pdf (0.5 MB)


In this paper, we extend the weak 1/r-net theorem to a kinetic setting where the underlying set of points is moving polynomially with bounded description complexity. We establish that one can find a kinetic analog N of a weak 1/r-net of cardinality O(r^(d(d+1)/2)log^d r) whose points are moving with coordinates that are rational functions with bounded description complexity. Moreover, each member of N has one polynomial coordinate.

BibTeX - Entry

  author =	{Alexandre Rok and Shakhar Smorodinsky},
  title =	{{Weak 1/r-Nets for Moving Points}},
  booktitle =	{32nd International Symposium on Computational Geometry (SoCG 2016)},
  pages =	{59:1--59:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-009-5},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{51},
  editor =	{S{\'a}ndor Fekete and Anna Lubiw},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-59514},
  doi =		{10.4230/LIPIcs.SoCG.2016.59},
  annote =	{Keywords: Hypergraphs, Weak epsilon-net}

Keywords: Hypergraphs, Weak epsilon-net
Collection: 32nd International Symposium on Computational Geometry (SoCG 2016)
Issue Date: 2016
Date of publication: 10.06.2016

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI