DagSemProc.05031.17.pdf
- Filesize: 56 kB
- 4 pages
Consider the problem of discovering (or verifying) the edges and non-edges of a network, modelled as a connected undirected graph, using a minimum number of queries. A query at a vertex v discovers (or verifies) all edges and non-edges whose endpoints have different distance from v. In the network discovery problem, the edges and non-edges are initially unknown, and the algorithm must select the next query based only on the results of previous queries. We study the problem using competitive analysis and give a randomized on-line algorithm with competitive ratio O(sqrt(n*log n)) for graphs with n vertices. We also show that no deterministic algorithm can have competitive ratio better than 3. In the network verification problem, the graph is known in advance and the goal is to compute a minimum number of queries that verify all edges and non-edges. This problem has previously been studied as the problem of placing landmarks in graphs or determining the metric dimension of a graph. We show that there is no approximation algorithm for this problem with ratio o(log n) unless P=NP. Furthermore, we prove that the optimal number of queries for d-dimensional hypercubes is Theta(d/log d).
Feedback for Dagstuhl Publishing