DagSemProc.05021.12.pdf
- Filesize: 218 kB
- 7 pages
If A is a subring of a ring B, then an interpolated ring is the union of A and {b in B : P} for some proposition P. These interpolated rings come up frequently in the construction of Brouwerian examples. We study conditions on the inclusion of A in B that guarantee, for some property of rings, that if A and B both have that property, then so does any interpolated ring. Classically, no condition is necessary because each interpolated ring is either A or B. We also would like such a condition to be necessary in the sense that if it fails, and every interpolated ring has the property, then some omniscience principle holds.
Feedback for Dagstuhl Publishing