LIPIcs.FSTTCS.2009.2307.pdf
- Filesize: 215 kB
- 12 pages
We study continuous-time stochastic games with time-bounded reachability objectives. We show that each vertex in such a game has a \emph{value} (i.e., an equilibrium probability), and we classify the conditions under which optimal strategies exist. Finally, we show how to compute optimal strategies in finite uniform games, and how to compute $\varepsilon$-optimal strategies in finitely-branching games with bounded rates (for finite games, we provide detailed complexity estimations).
Feedback for Dagstuhl Publishing