LIPIcs.FSTTCS.2014.481.pdf
- Filesize: 458 kB
- 12 pages
We show new results about the garden-hose model. Our main results include improved lower bounds based on non-deterministic communication complexity (leading to the previously unknown Theta(n) bounds for Inner Product mod 2 and Disjointness), as well as an O(n * log^3(n) upper bound for the Distributed Majority function (previously conjectured to have quadratic complexity). We show an efficient simulation of formulae made of AND, OR, XOR gates in the garden-hose model, which implies that lower bounds on the garden-hose complexity GH(f) of the order Omega(n^{2+epsilon}) will be hard to obtain for explicit functions. Furthermore we study a time-bounded variant of the model, in which even modest savings in time can lead to exponential lower bounds on the size of garden-hose protocols.
Feedback for Dagstuhl Publishing