The b-chromatic number of a graph G, chi_b(G), is the largest integer k such that G has a k-vertex coloring with the property that each color class has a vertex which is adjacent to at least one vertex in each of the other color classes. In the B-Chromatic Number problem, the objective is to decide whether chi_b(G) >= k. Testing whether chi_b(G)=Delta(G)+1, where Delta(G) is the maximum degree of a graph, itself is NP-complete even for connected bipartite graphs (Kratochvil, Tuza and Voigt, WG 2002). In this paper we study B-Chromatic Number in the realm of parameterized complexity and exact exponential time algorithms. We show that B-Chromatic Number is W[1]-hard when parameterized by k, resolving the open question posed by Havet and Sampaio (Algorithmica 2013). When k=Delta(G)+1, we design an algorithm for B-Chromatic Number running in time 2^{O(k^2 * log(k))}*n^{O(1)}. Finally, we show that B-Chromatic Number for an n-vertex graph can be solved in time O(3^n * n^{4} * log(n)).
@InProceedings{panolan_et_al:LIPIcs.IPEC.2015.389, author = {Panolan, Fahad and Philip, Geevarghese and Saurabh, Saket}, title = {{B-Chromatic Number: Beyond NP-Hardness}}, booktitle = {10th International Symposium on Parameterized and Exact Computation (IPEC 2015)}, pages = {389--401}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-92-7}, ISSN = {1868-8969}, year = {2015}, volume = {43}, editor = {Husfeldt, Thore and Kanj, Iyad}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2015.389}, URN = {urn:nbn:de:0030-drops-55997}, doi = {10.4230/LIPIcs.IPEC.2015.389}, annote = {Keywords: b-chromatic number, exact algorithm, parameterized complexity} }
Feedback for Dagstuhl Publishing