Weak 1/r-Nets for Moving Points

Authors Alexandre Rok, Shakhar Smorodinsky



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2016.59.pdf
  • Filesize: 0.51 MB
  • 13 pages

Document Identifiers

Author Details

Alexandre Rok
Shakhar Smorodinsky

Cite As Get BibTex

Alexandre Rok and Shakhar Smorodinsky. Weak 1/r-Nets for Moving Points. In 32nd International Symposium on Computational Geometry (SoCG 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 51, pp. 59:1-59:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016) https://doi.org/10.4230/LIPIcs.SoCG.2016.59

Abstract

In this paper, we extend the weak 1/r-net theorem to a kinetic setting where the underlying set of points is moving polynomially with bounded description complexity. We establish that one can find a kinetic analog N of a weak 1/r-net of cardinality O(r^(d(d+1)/2)log^d r) whose points are moving with coordinates that are rational functions with bounded description complexity. Moreover, each member of N has one polynomial coordinate.

Subject Classification

Keywords
  • Hypergraphs
  • Weak epsilon-net

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. N. Alon, I. Bárány, Z. Füredi, and D.J. Kleitman. Point selections and weak e-nets for convex hulls. Combinatorics, Probability & Computing, 1:189-200, 1992. Google Scholar
  2. B. Aronov, B. Chazelle, and H. Edelsbrunner. Points and triangles in the plane and halving planes in space. Discrete & Computational Geometry, 6:435-442, 1991. URL: http://dx.doi.org/10.1007/BF02574700.
  3. B. Bukh, J. Matoušek, and G. Nivasch. Lower bounds for weak epsilon-nets and stair-convexity. Israel Journal of Mathematics, 182(1):199-228, 2011. Google Scholar
  4. J.L. De Carufel, M. Katz, M. Korman, A. van Renssen, M. Roeloffzen, and S. Smorodinsky. On kinetic range spaces and their applications. CoRR, abs/1507.02130, 2015. URL: http://arxiv.org/abs/1507.02130.
  5. B. Chazelle, H. Edelsbrunner, M. Grigni, L.J. Guibas, M. Sharir, and E. Welzl. Improved bounds on weak epsilon-nets for convex sets. Discrete & Computational Geometry, 13:1-15, 1995. Google Scholar
  6. B. Chazelle, H. Edelsbrunner, M. Grigni, L.J. Guibas, M. Sharir, and E. Welzl. Improved bounds on weak epsilon-nets for convex sets. Discrete & Computational Geometry, 13:1-15, 1995. URL: http://dx.doi.org/10.1007/BF02574025.
  7. D. Haussler and E. Welzl. epsilon-nets and simplex range queries. Discrete & Computational Geometry, 2:127-151, 1987. URL: http://dx.doi.org/10.1007/BF02187876.
  8. J. Matoušek and U. Wagner. New constructions of weak epsilon-nets. Discrete & Computational Geometry, 32(2):195-206, 2004. Google Scholar
  9. N.H. Mustafa and S. Ray. Weak epsilon-nets have basis of size o(1/epsilon log(1/epsilon)) in any dimension. Comput. Geom., 40(1):84-91, 2008. URL: http://dx.doi.org/10.1016/j.comgeo.2007.02.006.
  10. A. Ya. Chervonenkis V. N. Vapnik. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications, 16:264-280, 1971. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail