Creative Commons Attribution 3.0 Unported license
In the Asymmetric Traveling Salesperson Problem (ATSP) the goal is to find a closed walk of minimum cost in a directed graph visiting every vertex. We consider the approximability of ATSP on topologically restricted graphs. It has been shown by Oveis Gharan and Saberi [SODA, 2011] that there exists polynomial-time constant-factor approximations on planar graphs and more generally graphs of constant orientable genus. This result was extended to non-orientable genus by Erickson and Sidiropoulos [SoCG, 2014].
We show that for any class of nearly-embeddable graphs, ATSP admits a polynomial-time constant-factor approximation. More precisely, we show that for any fixed non-negative k, there exist positive alpha and beta, such that ATSP on n-vertex k-nearly-embeddable graphs admits an alpha-approximation in time O(n^beta). The class of k-nearly-embeddable graphs contains graphs with at most k apices, k vortices of width at most k, and an underlying surface of either orientable or non-orientable genus at most k. Prior to our work, even the case of graphs with a single apex was open. Our algorithm combines tools from rounding the Held-Karp LP via thin trees with dynamic programming.
We complement our upper bounds by showing that solving ATSP exactly on graphs of pathwidth k (and hence on k-nearly embeddable graphs) requires time n^{Omega(k)}, assuming the Exponential-Time Hypothesis (ETH). This is surprising in light of the fact that both TSP on undirected graphs and Minimum Cost Hamiltonian Cycle on directed graphs are FPT parameterized by treewidth.
@InProceedings{marx_et_al:LIPIcs.APPROX-RANDOM.2016.16,
author = {Marx, D\'{a}niel and Salmasi, Ario and Sidiropoulos, Anastasios},
title = {{Constant-Factor Approximations for Asymmetric TSP on Nearly-Embeddable Graphs}},
booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016)},
pages = {16:1--16:54},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-018-7},
ISSN = {1868-8969},
year = {2016},
volume = {60},
editor = {Jansen, Klaus and Mathieu, Claire and Rolim, Jos\'{e} D. P. and Umans, Chris},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2016.16},
URN = {urn:nbn:de:0030-drops-66391},
doi = {10.4230/LIPIcs.APPROX-RANDOM.2016.16},
annote = {Keywords: asymmetric TSP, approximation algorithms, nearly-embeddable graphs, Held-Karp LP, exponential time hypothesis}
}