LIPIcs.APPROX-RANDOM.2016.44.pdf
- Filesize: 0.5 MB
- 15 pages
We study a direct-sum question for read-once branching programs. If M(f) denotes the minimum average memory required to compute a function f(x_1,x_2, ..., x_n) how much memory is required to compute f on k independent inputs that arrive in parallel? We show that when the inputs are sampled independently from some domain X and M(f) = Omega(n), then computing the value of f on k streams requires average memory at least Omega(k * M(f)/n). Our results are obtained by defining new ways to measure the information complexity of read-once branching programs. We define two such measures: the transitional and cumulative information content. We prove that any read-once branching program with transitional information content I can be simulated using average memory O(n(I+1)). On the other hand, if every read-once branching program with cumulative information content I can be simulated with average memory O(I+1), then computing f on k inputs requires average memory at least Omega(k * (M(f)-1)).
Feedback for Dagstuhl Publishing