Truthful Prompt Scheduling for Minimizing Sum of Completion Times

Authors Alon Eden, Michal Feldman, Amos Fiat, Tzahi Taub



PDF
Thumbnail PDF

File

LIPIcs.ESA.2018.27.pdf
  • Filesize: 0.6 MB
  • 14 pages

Document Identifiers

Author Details

Alon Eden
  • Tel Aviv University, Israel
Michal Feldman
  • Tel Aviv University and Microsoft Research, Israel
Amos Fiat
  • Tel Aviv University, Israel
Tzahi Taub
  • Tel Aviv University, Israel

Cite As Get BibTex

Alon Eden, Michal Feldman, Amos Fiat, and Tzahi Taub. Truthful Prompt Scheduling for Minimizing Sum of Completion Times. In 26th Annual European Symposium on Algorithms (ESA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 112, pp. 27:1-27:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018) https://doi.org/10.4230/LIPIcs.ESA.2018.27

Abstract

We give a prompt online mechanism for minimizing the sum of [weighted] completion times. This is the first prompt online algorithm for the problem. When such jobs are strategic agents, delaying scheduling decisions makes little sense. Moreover, the mechanism has a particularly simple form of an anonymous menu of options.

Subject Classification

ACM Subject Classification
  • Theory of computation → Scheduling algorithms
  • Theory of computation → Algorithmic mechanism design
Keywords
  • Scheduling
  • Mechanism design
  • Online algorithms

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. J. Bruno, E. G. Coffman, Jr., and R. Sethi. Scheduling independent tasks to reduce mean finishing time. Commun. ACM, 17(7):382-387, 1974. URL: http://dx.doi.org/10.1145/361011.361064.
  2. George Christodoulou, Elias Koutsoupias, and Akash Nanavati. Coordination mechanisms. In Automata, Languages and Programming: 31st International Colloquium, ICALP 2004, Turku, Finland, July 12-16, 2004. Proceedings, pages 345-357, 2004. URL: http://dx.doi.org/10.1007/978-3-540-27836-8_31.
  3. Ilan Reuven Cohen, Alon Eden, Amos Fiat, and Lukasz Jez. Pricing online decisions: Beyond auctions. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 73-91. SIAM, 2015. URL: http://dx.doi.org/10.1137/1.9781611973730.7.
  4. Richard Cole, Shahar Dobzinski, and Lisa Fleischer. Prompt mechanisms for online auctions. In Proceedings of the 1st International Symposium on Algorithmic Game Theory, SAGT '08, pages 170-181, Berlin, Heidelberg, 2008. Springer-Verlag. URL: http://dx.doi.org/10.1007/978-3-540-79309-0_16.
  5. Constantinos Daskalakis, Moshe Babaioff, and Hervé Moulin, editors. Proceedings of the 2017 ACM Conference on Economics and Computation, EC '17, Cambridge, MA, USA, June 26-30, 2017. ACM, 2017. Google Scholar
  6. Alon Eden, Michal Feldman, Amos Fiat, and Tzahi Taub. Prompt scheduling for selfish agents. CoRR, abs/1804.03244, 2018. URL: http://arxiv.org/abs/1804.03244.
  7. Michal Feldman, Amos Fiat, and Alan Roytman. Makespan minimization via posted prices. In Daskalakis et al. [5], pages 405-422. URL: http://dx.doi.org/10.1145/3033274.3085129.
  8. Eric J. Friedman and David C. Parkes. Pricing wifi at starbucks: Issues in online mechanism design. In Proceedings of the 4th ACM Conference on Electronic Commerce, EC '03, pages 240-241, New York, NY, USA, 2003. ACM. URL: http://dx.doi.org/10.1145/779928.779978.
  9. Vasilis Gkatzelis, Evangelos Markakis, and Tim Roughgarden. Deferred-acceptance auctions for multiple levels of service. In Daskalakis et al. [5], pages 21-38. URL: http://dx.doi.org/10.1145/3033274.3085142.
  10. R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical Journal, 45:1563-1581, 1966. Google Scholar
  11. Ronald L Graham, Eugene L Lawler, Jan Karel Lenstra, and AHG Rinnooy Kan. Optimization and approximation in deterministic sequencing and scheduling: a survey. In Annals of discrete mathematics, volume 5, pages 287-326. Elsevier, 1979. Google Scholar
  12. Leslie A. Hall, Andreas S. Schulz, David B. Shmoys, and Joel Wein. Scheduling to minimize average completion time: Off-line and on-line approximation algorithms. Math. Oper. Res., 22(3):513-544, 1997. URL: http://dx.doi.org/10.1287/moor.22.3.513.
  13. Jason D. Hartline and Tim Roughgarden. Simple versus optimal mechanisms. In Proceedings 10th ACM Conference on Electronic Commerce (EC-2009), Stanford, California, USA, July 6-10, 2009, pages 225-234, 2009. URL: http://dx.doi.org/10.1145/1566374.1566407.
  14. Sungjin Im and Janardhan Kulkarni. Fair online scheduling for selfish jobs on heterogeneous machines. In Christian Scheideler and Seth Gilbert, editors, Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2016, Asilomar State Beach/Pacific Grove, CA, USA, July 11-13, 2016, pages 185-194. ACM, 2016. URL: http://dx.doi.org/10.1145/2935764.2935773.
  15. Sungjin Im, Benjamin Moseley, Kirk Pruhs, and Clifford Stein. Minimizing maximum flow time on related machines via dynamic posted pricing. In Kirk Pruhs and Christian Sohler, editors, 25th Annual European Symposium on Algorithms, ESA 2017, September 4-6, 2017, Vienna, Austria, volume 87 of LIPIcs, pages 51:1-51:10. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. URL: http://dx.doi.org/10.4230/LIPIcs.ESA.2017.51.
  16. Nicole Immorlica, Li (Erran) Li, Vahab S. Mirrokni, and Andreas S. Schulz. Coordination mechanisms for selfish scheduling. Theor. Comput. Sci., 410(17):1589-1598, 2009. URL: http://dx.doi.org/10.1016/j.tcs.2008.12.032.
  17. Ron Lavi and Noam Nisan. Competitive analysis of incentive compatible on-line auctions. In Proceedings of the 2Nd ACM Conference on Electronic Commerce, EC '00, pages 233-241, New York, NY, USA, 2000. ACM. URL: http://dx.doi.org/10.1145/352871.352897.
  18. Jan Karel Lenstra, David B. Shmoys, and Éva Tardos. Approximation algorithms for scheduling unrelated parallel machines. Math. Program., 46:259-271, 1990. URL: http://dx.doi.org/10.1007/BF01585745.
  19. J.K. Lenstra, A.H.G. Rinnooy Kan, and P. Brucker. Complexity of machine scheduling problems. In P.L. Hammer, E.L. Johnson, B.H. Korte, and G.L. Nemhauser, editors, Studies in Integer Programming, volume 1 of Annals of Discrete Mathematics, pages 343-362. Elsevier, 1977. URL: http://dx.doi.org/10.1016/S0167-5060(08)70743-X.
  20. Nicole Megow and Andreas S. Schulz. On-line scheduling to minimize average completion time revisited. Oper. Res. Lett., 32(5):485-490, 2004. URL: http://dx.doi.org/10.1016/j.orl.2003.11.008.
  21. Noam Nisan and Amir Ronen. Algorithmic mechanism design. Games and Economic Behavior, 35(1-2):166-196, 2001. Google Scholar
  22. Cynthia Phillips, Clifford Stein, and Joel Wein. Minimizing average completion time in the presence of release dates. Mathematical Programming, 82(1):199-223, Jun 1998. URL: http://dx.doi.org/10.1007/BF01585872.
  23. Linus Schrage. Letter to the editor-a proof of the optimality of the shortest remaining processing time discipline. Operations Research, 16(3):687-690, 1968. Google Scholar
  24. Linus E. Schrage and Louis W. Miller. The queue m / g /1 with the shortest remaining processing time discipline. Operations Research, 14(4):670-684, 1966. Google Scholar
  25. David B. Shmoys, Joel Wein, and David P. Williamson. Scheduling parallel machines on-line. SIAM J. Comput., 24(6):1313-1331, 1995. URL: http://dx.doi.org/10.1137/S0097539793248317.
  26. Wayne E. Smith. Various optimizers for single-stage production. Naval Research Logistics Quarterly, 3(1-2):59-66, 1956. URL: http://dx.doi.org/10.1002/nav.3800030106.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail