LIPIcs.ISAAC.2020.53.pdf
- Filesize: 1.04 MB
- 17 pages
The natural process of self-assembly has been studied through various abstract models due to the abundant applications that benefit from self-assembly. Many of these different models emerged in an effort to capture and understand the fundamental properties of different physical systems and the mechanisms by which assembly may occur. A newly proposed model, known as Tile Automata, offers an abstract toolkit to analyze and compare the algorithmic properties of different self-assembly systems. In this paper, we show that for every Tile Automata system, there exists a Signal-passing Tile Assembly system that can simulate it. Finally, we connect our result with a recent discovery showing that Tile Automata can simulate Amoebot programmable matter systems, thus showing that the Signal-passing Tile Assembly can simulate any Amoebot system.
Feedback for Dagstuhl Publishing